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Abstract
Smart electronic devices are playing a fundamental role in modern home and industrial applications. The increased reliance 
on such devices, especially in time critical and secure applications, intensifies the need for time synchronization among 
multiple devices. This work presents a novel audio-based, cheap, offline synchronization method, whereby multiple slaves 
synchronize simultaneously to a master within a single room. Synchronization is carried out under the proposed protocol 
in a way that is independent of the physical location of the target devices, which in turn are not required to have any sort of 
network connectivity. The proposed method relies on the transmission of a De Bruijn sequence that holds the information 
required for the slaves to synchronize. The effectiveness of the proposed synchronization protocol is validated through an 
in-house experimental setup. Synchronization at distances of up to 250 cm between the master and a slave was achieved.

Keywords Audio signals · De Bruijn sequence · Synchronization

1 Introduction

As smart electronic devices are becoming more abundant, 
we are becoming more dependent on their operation in the 
different aspects of our lives. As a direct result, their accu-
rate timing is becoming a more important requirement than 
ever before. Synchronization is required for applications 
ranging from small-scale smart homes to the operation of the 
power system. In [1], the authors discuss the synchronization 
of home appliances and devices connected to a single home-
area network. The need to synchronize indoor networks of 
sensors to govern the efficient operation of an HVAC (heat-
ing, ventilation, and air conditioning) system is presented in 

[2]. In [3] and [4], the importance of properly synchronized 
measurements for the operation of the power system is high-
lighted. Without proper time stamps, the system state esti-
mated based on these measurements can be incorrect leading 
to misguided and sub-optimal decision making. This in turn 
can reduce the reliability and/or efficiency of the entire sys-
tem. Synchronization in power systems is needed not only 
for wide area network measurements but also for compo-
nents within a single control room/substation.

Several synchronization schemes are available to ensure 
that multiple devices are synchronized to a common time 
reference or a master clock. These methods range from using 
an Internet connection [1, 5–7], a Global Position System 
(GPS) timestamp [3, 8–10], repetitive pulses of FM (fre-
quency modulation) signals [11], radio frequency (RF) sig-
nals [12], and light [13]. However, each of these schemes has 
its drawbacks that this work attempts to address. In network-
connected applications, there is always the possibility that 
the Internet connection is lost or subject to a delay or denial 
of service (DoS) attack [14]. A GPS signal has been proven 
to be vulnerable to spoofing [15–17]; the authors in [18] 
even proposed a method for the development of a portable 
civilian GPS spoofer. Although the reliability of RF sig-
nals has been proven and there is an abundance of standards 
governing their operation, the needed hardware for using 
this type of communication might not always be available 
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on preexisting devices requiring synchronization. When it 
comes to the light-based and camera approaches, the opera-
tion depends on a direct line of sight (LOS) which stands 
firmly in the way of concurrent practical synchronization of 
multiple devices.

In light of the above discussion, the objective of this 
study is the creation of a wireless broadcast synchronization 
scheme that is accurate, simple to implement, energy effi-
cient, offline, cheap, and that uses basic ubiquitous hardware 
components. This is achieved by the use of audio signals 
as a medium for synchronization. One of the main require-
ments underlying the operation of the proposed system is the 
ability to concurrently synchronize multiple smart devices 
present in the same room. The first reason behind using 
sound is the availability of the required hardware on most 
smart devices. The second reason lies in its ability to enable 
devices to communicate together without being connected 
to a common network. Finally, LOS is not required as this 
scheme takes advantage of the broadcast nature of sound. 
The authors of [19] address the use of inaudible sound for 
indoor synchronization purposes. They focus on a method 
that can mitigate the long time required for estimating the 
starting phase in using De Bruijn sequence by utilizing a 
table-lookup method instead of correlation. To the best of 
the authors’ knowledge there are no other research work 
that addresses using De Bruijn sequence for synchroniza-
tion using acoustic signals.

Audio signals have been used to transmit data for com-
mercial purposes by several companies. One such example is 
Chirp [20]. Chirp uses sound waves to transmit data between 
different devices which are only required to be equipped 
with a microphone and speaker. Acoustic signals have been 
utilized to classify events in surveillance systems [21]. 
Sound has also been used for underwater communication 
and synchronization purposes and was the subject of mul-
tiple studies. As an example, the authors of [22] provide a 
review of biologically inspired covert underwater acoustic 
communication, and the work presented in [23] provides a 
routing metric for multi-hop underwater acoustic metrics. 
On the other hand, the work presented in [24] and [25] aims 
at synchronizing multiple devices referred to as nodes. The 
authors of [24] present a method that is based on pairwise 
communication between nodes to overcome clock drift and 
keep the multiple slave nodes synchronized to a master node. 
In contrast, the method proposed in [25] takes advantage of 
the broadcast nature of sound for more efficient communica-
tion. These nodes are synchronized to several devices in the 
system having accurate time stamps. Both [24] and [25] will 
be further discussed in Section II.

This work utilizes the Universal Asynchronous Receiver 
Transmitter (UART) transceivers of two simple processors 
(PIC 18F4550), one to broadcast the synchronization signal 
and the other to receive it and synchronize the receiver’s 

clock accordingly. The strength of this scheme is that it can 
be implemented on preexisting processors of almost any 
smart device without the need for extra processing power. 
The implementation of this scheme only requires UART 
transceivers with a microphone and a signal conditioning 
circuit. In [13], the authors utilized a De Bruijn sequence 
[26, 27] to help in achieving energy efficiency by requiring 
that the receiver only wake up to a portion of the synchro-
nization signal and still synchronize correctly, as discussed 
further in Section II. This is a direct consequence of the De 
Bruijn sequence property stipulating that any specific n-bit 
window in such a sequence is found at a unique location 
within a 2n bit sequence [26, 27]. For this reason, the De 
Bruijn sequence was adopted in this work to send synchro-
nization data.

The next section gives a summary of the related studies. 
Section III describes the system design. Section IV reports 
the experimental results. Finally, Section V concludes the 
paper.

2  Background

A raft of studies has considered the topic of time synchro-
nization. The work in [7] described the effect of clock drift 
problems on applications requiring common timing. The 
authors addressed the importance of overcoming this clock 
drift via the Network Time Protocol (NTP). This would 
ensure that all devices connected to the Internet will main-
tain the same accurate timing.

The work in [6] demonstrates through an experiment the 
ability of Precision Time Protocol (PTP) to synchronize pha-
sor measurement units (PMUs) in a power system. This is 
done by synchronizing a GrandMaster clock (GM) to UTC 
via a GPS receiver and then connecting its output to the 
PMU’s clock. The latter exchanges IEEE 1588 synchroni-
zation messages with the GM to reconstruct the exact time 
reference. However, PTP is vulnerable to desynchronization 
attacks as described in [14]. In addition, synchronization 
attacks can be used to manipulate phase angle measurements 
and act as false data injection attacks against state estimation 
as described in [28].

The authors of [8] tested the possibility of synchro-
nizing multiple standalone devices to the time stamp of 
a GPS signal. Note that GPS signals are mainly used to 
provide accurate positioning but have extremely precise 
time stamps as a byproduct. This byproduct is due to the 
precise timing requirements of satellites needed for proper 
operation. The authors described how to utilize the data 
available in a GPS signal by extracting the exact, sta-
ble, and common time stamp to be used for correcting 
the drift of internal clocks in the considered devices. The 
observed results showed that two devices were able to be 
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synchronized to the exact UTC timing with a mean rela-
tive accuracy of 2.9 ns in a 24-h period and − 1.3 ns in a 
1-week time period. It is also important to note that the 
peak error was observed in the 1-week scenario and found 
to be equal to 550 ns. In both [6] and [8], GPS signals 
were successfully used to synchronize the clocks of vari-
ous elements. This work did not consider the use of GPS 
signals for synchronization due to the fact that they are not 
available indoors and that most simple smart devices do 
not have GPS modules. In addition, GPS signals are known 
to be vulnerable to spoofing [15–18].

In [11], the authors proposed a synchronization scheme 
based on FM radio. A new FM receiver was designed with 
the ability to extract a periodic pulse from FM broadcasts, 
referred to as the RDS (Radio Data System) clock. This peri-
odic pulse was then used as the message to which devices are 
synchronized. This scheme was tested in a lab for a period 
of 6 days as well as in a vehicle moving in a metropolitan 
area of 40  km2. The experiment showed that this scheme is 
stable and hence is a viable means for calibrating the clocks 
of large-scale sensor networks.

The scheme also predicts the drift error and calibrates 
the different device clocks via the RDS clock. The results 
showed that this scheme was able to achieve accurate and 
precise clock synchronization across the different devices. 
The main disadvantage of this synchronization scheme is the 
need for an FM receiver on each smart device.

The authors of [24] provided a scenario with multiple 
underwater nodes communicating with one another using 
sound waves. These nodes are distributed such that each 
node is in communication with a maximum of six geo-
graphically close nodes and synchronized to a master node 
called node zero. In this communication scheme, a sending 
node is targeting a specific receiver while a receiver node 
can receive data from multiple nodes. A time multiplex-
ing scheme was used to overcome interference between 
data packets. Dead time between time slots is introduced to 
guarantee correct reception. This dead time is equal to the 
transmission delay and an extra guard time so that the echoes 
of the previous packet would die out before another packet 
is expected to be received. Node zero begins a pairwise syn-
chronization scheme by sending an initialization packet to 
node one and records the time it sent this message. When 
node one receives this packet, it sends back a synchroniza-
tion packet of its own with the receive time in the header. 
Node zero takes note of the time and calculates the delay 
between these two nodes. It then sends back a packet with 
these time stamps to node one so that it would calculate 
the delay as well. This process is repeated between every 
pair of nodes that can communicate with one another. The 
authors of [24] were able to synchronize and communicate 
data between multiple nodes using sound waves while tak-
ing into consideration the effect of echoes and interference.

The authors of [25] also describe an underwater com-
munication scheme using sound waves between multiple 
active nodes. This scheme defines upper hop and lower hop 
directions for communication and also differentiates between 
beacon nodes that have exact time stamps and regular nodes 
that relay information. When a new beacon is introduced, 
it broadcasts a notification with hop number 1 and its own 
ID. A regular node that receives this notification adds this 
beacon’s ID to its lower hop neighbor set. The regular node 
then increments its hop number with respect to this bea-
con and broadcasts its ID with the its updated hop number 
relative to that specific beacon. Any regular node receiving 
this broadcast updates its hop distance with respect to the 
beacon. This way a node knows its own hop distance with 
respect to a specific beacon as well as the hop information 
of all its neighbors from that beacon. Whenever a regular 
node wants to synchronize, it broadcasts a request asking for 
synchronization from its lower hop neighbors. It records the 
time it sent this request and the time it received an answer 
as well as the send and receive time stamps of the neigh-
bors answering this request. This pairwise synchronization 
is iterated for added accuracy. The original request is then 
transmitted all the way down the hop chain to the beacon 
and back from the beacon to the node that sent it. Due to 
the broadcast nature of the requests and replies, the node 
will have time stamp data from all its lower hop neighbors 
originating from several beacons. In summary, the proposed 
scheme in [25] was successful in synchronizing scattered 
nodes using audio signals underwater.

The work in [26] proved the existence of unique sets of 
periodic sequences later referred to in the literature as De 
Bruijn sequences. The main property of these sequences is 
that any n consecutive digits can be found uniquely at one 
and only one location within a 2n cycle. The background on 
the applications of the De Bruijn sequence is quite exten-
sive, the following attempts to highlight some of the applica-
tion areas that have used this sequence. In communication 
systems, for example, the work in [29] investigated the use 
of the De Bruijn sequence as user spreading codes in DS-
CDMA systems; while the authors of [30] propose using an 
even–odd equivalent (EOE) pseudo De Bruijn sequence for 
primary synchronization of private mobile radio (PMR) over 
LTE to increase security. In [31], the researchers investigate 
the use of constrained De Bruijn sequence in correlation 
with racetrack memories to correct synchronization errors 
such as deletions and sticky insertions. Meteroid trajecto-
ries can be recorded by using long-exposure fireball pho-
tographs. Then by using periodic shuttering, the meteoroid 
velocity can be determined. The researchers in [32] prove 
that by using a De Bruijn sequence to drive the periodic 
shutter, they were able to eliminate the need of a separate 
subsystem to record absolute fireball timing and were able to 
reach sub-millisecond resolution. The work in [13] proposes 
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a synchronization scheme that uses LEDs and visible light as 
the medium for signal transmission and that targets energy-
constrained devices. Under this scheme, the receiver is only 
required to be awake for a portion of the synchronization 
signal and then goes back to sleep. The receiver then wakes 
up before the synchronization point is reached and performs 
heavy sampling to obtain the exact synchronization point. 
This large amount of data was then processed with the help 
of an online algorithm. The De Bruijn sequence was used 
as the synchronization signal. The list of applications of 
this sequence is quite extensive and covers expansive areas 
of research, the provided examples only skim the surface. 
Our specific application of using this sequence for clock 
synchronization is closest to the manner used in [13]. The 
receiver in our approach does wake up periodically to catch 
the synchronization sequence, but the synchronization is 
done by utilizing the timestamps of the received packets 
and synchronizing back to the initial point of the sequence, 
which differs significantly from the technique presented in 
[13]. The visible light scheme used in [13] was not utilized 
due to its reliance on LOS that greatly limits its feasibility to 
synchronize multiple components in one room.

In light of the above discussion, our proposed scheme 
utilizes sound wave communication and a De Bruijn 
sequence to achieve synchronization in an indoor scenario. 
The following section focuses on the novelty of the design. 
The main contribution of this work can be summarized as 
follows:

1) The development of a novel cost-effective offline acous-
tic-based synchronization scheme.

2) The implementation of a hardware prototype with a view 
to verifying the validity and analyzing the performance 
of the proposed scheme.

3) Experimental investigation of the effects of different 
microphone setups (using insulation, metal plate) on 
the directivity and reach of the acoustic synchroniza-
tion scheme.

The proposed scheme can be the primary synchronization 
mechanism in rooms that are not inhabited. Alternatively, 
it can be used as a backup offline system that does not run 
continuously, in which case its main use would be to handle 
any error or detected cyber-attack compromising the primary 
synchronization mechanism.

3  System design

The proposed synchronization system operates in a mas-
ter–slave mode. In particular, the master has the responsibil-
ity of acoustically transmitting the De Bruijn-based synchro-
nization sequence to the slave devices; which in turn utilize 

the received sequence to adjust their clocks. The master and 
slaves are assumed to be located within a room.

3.1  Proposed protocol

The master sends the synchronization sequence once every 
Tp_Master time units and the whole sequence lasts TSync time 
units. Note that the specifics of the synchronization sequence 
are addressed in Section III.B. Figure 1 provides a state dia-
gram that describes the role of the master which will be trig-
gered at periodic intervals of length Tp_Master to broadcast the 
synchronization sequence throughout the room. The master 
has two modes of operation, either sending the synchroniza-
tion sequence or waiting for the trigger to send the sequence. 
Depending on the type of application and its timing require-
ment, the length of the periodic intervals when the synchro-
nization sequence should be sent and received will vary.

The slave device on the other hand is required to wake 
up and listen to catch the synchronization sequence, wak-
ing up periodically every Tp_Slave time units. For illustration 
purposes, if we assume that the slave device is already syn-
chronized to the master, the clock drift is less than TSync, and 
Tp_Master = Tp_Slave, then the slave will always wake up while 
the synchronization sequence is being transmitted and as 
such will be able to re-align its clock with that of the master 
as illustrated in Fig. 2. This is the optimal operational mode 
that the system will always attempt to reach. Figure 3 depicts 
the state diagram of the slave under the various expected 
situations. The slave first wakes-up (Wake – Up state) by a 
trigger at Tp_Slave and listens to check if the synchronization 
sequence is being received by its signal conditioning cir-
cuit. If the sequence is being received the operation moves 
to the Receive N Windows state depicted in Fig. 3; other-
wise, the slave will go into the Wait, Active Receiver state. 
While in the latter state, the slave will actively wait for the 
synchronization sequence. Upon the detection of the syn-
chronization sequence, the slave transitions to the Receive 
N Windows state. The value N, which represents a portion 
of the sequence sent by the master, is chosen based on the 
specific parameters of the utilized De Bruijn sequence as 

Send
Synchroniza�on 

Sequence
Wait

Sending Sequence 
Completed

Trigger at Tp_Master

Fig. 1  State diagram for the master
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will be explained in Section III.B. On the successful recep-
tion of N windows, the slave moves to the Synchronize state 
where the information from the received windows is used 
to re-align the slave’s clock with that of the master. In this 
case, the slave can go to the inactive low-power state Sleep 
and will wake up after a Tp_Slave period elapses. In case the 
N windows reception was not successful, the slave moves to 
the Read Extra Window state. In this state, it will continue 
receiving windows till N consecutive correct windows are 
received and the slave can thus move to the Synchronize 
state to re-adjust its clock, as explained in Section III.B. 
If the synchronization sequence ends before a successful 
reception occurs, the slave has to move to the Wait, Active 
Receiver state awaiting another sequence, representing the 
least optimal operation of this scheme as illustrated in Fig. 4. 
A detailed example is provided in the following sections to 
fully explain the operation of the proposed protocol.

It is worthwhile noting that Tp_Master and Tp_Slave are set 
according to the requirements of the specific application. For 
an application having stringent convergence requirements, 
the master can transmit the synchronization sequence con-
tinuously while slaves wake up at short intervals.

3.2  Synchronization sequence and encoding 
scheme

With a De Bruijn sequence, it is enough for the receiver to 
detect an n-bit window to identify the current position in 
the transmitted sequence. This concept is highlighted in a 
simplified example that follows.

Consider a 4-bit window sequence of length 24 (16 bits) 
such that the sequence Seq = 0 0 0 0 1 0 0 1 1 0 1 0 1 1 1 1 
and the windows are called W1, W2, W3… The first window 
is the first 4 bits (W1 = 0 0 0 0); the second window is bits 2 

Fig. 2  Best case scenario 
where slaves always wake up 
during the transmission of the 
synchronization sequence and 
re-synchronizes with the master Master

Slave

Slave awakens 
within TSync

Slave awakens 
within TSync

Re-synchroniza on
Clock 
Dri

Time

Tp_Master Tp_Master

TSync

Tp_Master

Tp_Slave Tp_Slave

Tp_Master

TSync TSync TSync

Fig. 3  State diagram for the 
slave

Wake - Up

Receive N 
Windows

Wait,
Ac�ve 

Receiver

Sequence Recep�on 
Ac�ve

Synchronize

Read Extra 
Window

Unsuccessful
Recep�on

Sleep

Sequence Ended
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to 5 (W2 = 0 0 0 1); sliding the window one bit at a time the 
remaining windows are constructed as depicted in Fig. 5. As 
a reference, Table 1 lists all the possible 4-bit windows from 
the De Bruijn sequence Seq.

Examining this sequence shows that any 4-bit window 
has a unique position within the sequence. Hence, in an 
error-free De Bruijn sequence, it is enough to read 4 bits 
to determine the current location within the entire 16 bits. 
An additional feature of a De Bruijn sequence is its ability 
to easily detect errors. To compensate for the possibility of 
errors, m extra bits are read and error detection is carried out 
as demonstrated below.

Assuming the transmitted signal is given by Tx = 0 1 0 0 1 
1 0, the De Bruijn windows are W4, W5, W6, and W7. Due to 
noise the signal is received as Rx = 0 1 0 0 1 1 1 and decoded 
as W4, W5, W6, and W12 as illustrated in Fig. 6. Since a W12 
window is received in lieu of a W7 one, the W12 is identified 
as erroneous.

Given that UART was used for the hardware connection 
with an 8-bit transmission unit, an 8-bit window 256-bit-
long De Bruijn sequence was used as our synchronization 
sequence. In order to avoid the presence of long sequences 
of 0 s and 1 s, we decided to use differential Manchester 
encoding to transmit 01 for a logic 0 value of the De Bruijn 
sequence and 10 for a logic 1. This encoding scheme has 
been proven to be effective in several communication fields 
[33–36]. In contrast, the price of using such a scheme is that 
it requires double the bandwidth with each 8-bit De Bruijn 
window being transmitted as 16 bits.

3.3  Synchronization

For ease of discussion, a parameter naming scheme was 
adopted to represent the variables in the system. The 
variables providing time values start with “T”, while “L” 
is used for bit length amounts. In addition to these, Seq 
is used to represent the De Bruijn sequence in question 
and Wi represents the window at ith interval in Seq. As 

Fig. 4  Worst case scenario 
where slave misses  TSync and 
has to actively listen for the 
sequence. Slave then fails to 
receive sufficient windows to re-
synchronize and actively listens 
again for another cycle

Master

Slave

Slave awakens
outside TSync

Slave fails to receive 
N windows

Clock
Dri Slave catches N windows

and re-synchronizes

Slave awakens
within TSync

Time

Tp_Master Tp_Master Tp_Master

Tp_Slave
Slave ac vely

listening

Tp_Master

Slave ac vely listening Tp_Slave

TSync TSync TSync TSync TSync

Seq = 0 0 0 0 1 0 0 1 1 0 1 0 1 1 1 1

W1 W5

W2 W6

W3

W4

Fig. 5  The De Bruijn sequence Seq has a 16 bit length and a 4-bit 
sliding window

Table 1  The list of all the 4-bit 
windows of the De Bruijun 
sequence Seq

W1 0000 W5 1001 W9 1010 W13 1111
W2 0001 W6 0011 W10 0101 W14 1110
W3 0010 W7 0110 W11 1011 W15 1100
W4 0100 W8 1101 W12 0111 W16 1000

Rx = 0 1 0 0 1 1 1

W4

W5

W6

Tx = 0 1 0 0 1 1 0

W4

W5

W6

W7

Fig. 6  The Tx sequence represents the sent sequence W4,W5,W6,W7 
and Rx represents the received sequence with a 1-bit error that breaks 
the window sequence order with W12 being received instead of W7 
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a recap, the following variable names have already been 
encountered:

• Tp_Master: The periodic time the master waits to send the 
synchronization sequence.

• Tp_Slave: The periodic time at which the slave wakes up 
to detect the synchronization sequence.

• TSync: The time required to send the synchronization 
sequence.

The serial communication scheme dictates the presence 
of a start and an end bit for every UART packet of data 
being sent. Thus, the total sequence time is calculated as 
follows:

• Original sequence length is denoted by LSeq bits.
• Length after Manchester encoding = 2*LSeq bits
• Length of UART packet is symbolized as Lpkt bits.
• Number of UART packets being transmitted = (2*Lseq)/

Lpkt packets.
• Length with the start and end bits = (2*Lseq)/Lpkt packets 

of (1 + Lpkt + 1) bits
• Time to send 1 bit is indicated by Tbit.
• Time to send 1 packet = (2 + Lpkt)*Tbit
• Total sequence length, TSync = (2*Lseq)/Lpkt * 

(2 + Lpkt)*Tbit
• Number of UART packets read during state Receive N 

Windows, is denoted by M.
• Size of window Wi is represented by Lwnd.

Accordingly, every Tp_Slave the receiver will wake up and 
read M UART packets (M*Lpkt hardware bits), which repre-
sent M*Lpkt/2 De Bruijn bits or N sliding windows of Lwnd 
bits each. Recall that each received window has a unique 
position within the whole De Bruijn sequence. As such, the 
slave makes sure these windows are ordered in a way con-
sistent with the proposed protocol. It then proceeds to cal-
culate the exact time. The following are used by the receiver 
to determine the current time.

• The elapsed time since the last synchronization cycle is 
denoted by Δt.

• (Tp_Slave—TSync) represents the time from the end of the 
previous cycle (Seq has just been sent) till the beginning 
of the current De Bruijn sequence (new Seq just com-
menced).

• Pi is the position of the last read UART packet in the 
current sequence with respect to the beginning of the 
sequence.

• Pi *(2 + Lpkt)*Tbit represents the elapsed time since the 
beginning of the current Seq.

• Pi-1 is the position of the last read UART packet in the 
previous synchronization sequence.

• (Pi-1*(2 + Lpkt)*Tbit—TSync) is the time between the syn-
chronization point in the last sequence till the end of the 
previous Tp_Slave. This subtraction calculates the elapsed 
time since the last synchronization cycle.

Based on the above,

Δt is then added to the previous time stamp to calculate 
the exact time of reception of the latest synchronization 
packet; Δt = ti – ti-1 where ti is the time of reception of the 
last packet within the sequence in cycle i.

For Illustration purposes, consider M = 2 packets and 
Lpkt = 8 bits, then the number of Manchester encoded bits 
of the 2 UART packets = 2*Lpkt = 16 bits. Figure 7 provides 
an illustration of the Manchester encoded sequence Seq that 
is transmitted by the master. The receiver wakes up and 
receives the first two packets that are highlighted in gray in 
Fig. 7. Decoding the two received packets recreates the first 
portion of Seq as depicted in Fig. 8.

The number of decoded De Bruijn bits of the 2 decoded 
packets = 16/2 = 8 bits. Considering a De Bruijn window size 
of 4 bits, the 8 received decoded bits in Fig. 8 include N = 5 
windows, namely, W1, W2, W3, W4, and W5, refer to Section 
III.B. Figure 9 provides an illustration of two cycles of syn-
chronization. During the current cycle, the slave receives 
two packets and ti marks the time stamp of the reception of 
the last packet. On the other hand, ti-1 marks the time of the 
last packet received in the previous cycle. Clock correction 
is carried out as

From Fig. 9, Pi = 1, Pi-1 = 2 and Δt is thus Tp_Slave + (1—
2)*(10)*Tbit = Tp_Slave- 10*Tbit. As a conclusion, the clock 
is corrected as ti = ti-1 + Δt = ti-1 + Tp_Slave—10*Tbit. A more 
comprehensive case study is provided in Section IV that 
covers all the experimental details of the presented hardware 
implementation.

Δt =
(

Tp_Slave − TSync
)

+ P∗

i

(

2 + Lpkt
)∗
Tbit −

(

P∗

i−1

(

2 + Lpkt
)∗

Tbit − TSync
)

Δt = Tp_Slave + P∗

i

(

2 + Lpkt
)∗
Tbit − Pi−1 ∗

(

2 + Lpkt
)∗
Tbit

Δt = Tp_Slave +
(

Pi − Pi−1

)∗(

2 + Lpkt
)∗
Tbit

ti = ti−1 + Δt, whereΔt = Tp_Slave +
(

Pi − Pi−1

)∗(

2 + Lpkt
)∗
Tbit

Manchester of Seq: 01010101100101101001100110101010

2*LSeq

0101010110010110

Lpkt Lpkt

0

2 packets

Fig. 7  Manchester encoded Seq that is transmitted by the master
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4  Experimental evaluation

An experimental case study was developed to showcase 
the feasibility of the proposed system. The details of the 
experimental setup and the achieved results are presented 
below.

4.1  System hardware prototype

To implement the master side of the system, a process-
ing device is connected to an off-the-shelf single channel 
speaker as depicted in Fig. 10 and implements a sliding 
window of 8 bits each as shown in Fig. 11. Figure 10 also 
shows shows the slave side of the proposed system, which 

includes a microphone, a conditioning circuit, and a pro-
cessor, as also shown in more details in Fig. 12. The basic 
speaker-microphone system was tested using a square wave 
from a function generator and its performance evaluated at 
different distances and frequencies. As seen in Fig. 12, a 
very basic electret condenser microphone was used with-
out the need for a high-quality microphone thus lowering 
the cost of the system. The output of this circuit was then 
decoupled, amplified, and clipped to extract the original 
square wave from the received signal and the result is dis-
played in Fig. 13. It is important to highlight that the upper 
square wave represents the input to the speaker and that is 
faithfully recreated at the receiver side as the lower wave 
form suggests.

Note that the processor used at both the transmitting and 
receiving sides was the PIC 18F4550 since modest process-
ing power, minimal memory size, and a UART are needed.

4.2  Experimental setup

Figure 10 shows the placement of the speaker and micro-
phone. The experiment was carried out in a noisy lab envi-
ronment with 10 desktop computers running, a ventila-
tion system, and all the equipment depicted in Fig. 10. In 
doing this, the setup is closer to a real scenario as opposed 

Seq: 0000100110101111000010011

Fig. 8  Receiver decodes the received 2 packets to recreate the first portion of Seq 

Fig. 9  An illustration of the 
synchronization mechanism 
with all the relevant variables

Time

1001 10100000 1111

ti-1

1001 10100000 1111

tiΔt
Lwnd

Pi-1 PiTp_Slave Tp_Slave

TSync

Fig. 10  Top view of the 
experimental setup showing 
the processing board of the two 
processors “PIC Board,” the 
“Signal Conditioning Circuit” 
and the “Speaker” emitting the 
synchronization sequence

Microphone 

Enclosure

Signal conditioning 

circuit

Speaker

PIC 

Board

Fig. 11  12 bits generate 5 slid-
ing windows of 8 bits each

000010011010
12 bits

8 bits
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to running the experiment in a studio with minimum noise 
levels.

To study the effect of reflections, five different setups 
of the microphone were used. The first setup is simply 
the microphone by itself (referred to as Standalone), the 
second utilizes acoustic insulation foam behind the micro-
phone (referred to as One Insulation Edge OIE and shown 
in Fig. 14), the third uses more insulation edges to cover 
five sides of the microphone (referred to as Five Insu-
lation Edges FIE, Fig. 15), the fourth places a metallic 
plate behind the microphone (Metal Plate MP, Fig. 16), 
while the fifth combines the metallic plate with a four-
sided boundary of the acoustic insulation (Metal Plate with 
Four Insulation Edges MPFIE, Fig. 17). Note that the MP 
and MPFIE were inspired by the boundary effect micro-
phone [37]. To further understand the effect of reflections, 
the metal plates were replaced with an insulation edge 

Fig. 12  The signal conditioning 
circuit

Fig. 13  Receiver performance 
at bit duration 0.52 ms

Microphone

Insulation

Fig. 14  The microphone in the One Insulation Edge (OIE) configura-
tion
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to create the OIE and FIE setups from the MP and the 
MPFIE setups respectively. The experimental configura-
tion detailed below was used with these five microphone 
setups and the obtained results are compared and discussed 
in following section.

By experimentation, the used speaker-microphone con-
figuration exhibited acceptable performance at bit dura-
tions ranging from 0.2 to 1 ms, with the best performance 
being observed at a bit duration of 0.52 ms. Thus, the PIC 
was programmed to send serial data with a bit duration 

as close as possible to 0.52 ms as dictated by the utilized 
crystal and PIC, specifically 0.520833 ms. It is worth 
noting that the 0-logic level was sent as − 2.5 V and the 
1-logic level as 2.5 V to the speaker. The following lists 
the various configurations of the experiment:

• Tp_Master: 60 s
• Tp_Slave: 60 s
• Original sequence length,  LSeq bits = 256.
• Length after Manchester encoding = 2*LSeq bits = 512 

bits.
• Length of UART packet,  Lpkt bits = 8 bits.
• Number of UART packets being transmitted = (2*Lseq)/

Lpkt = 64 packets.
• Length with the start and end bits = (2*Lseq)/Lpkt pack-

ets of (1 +  Lpkt + 1) = 10 bits.
• Time to send 1 bit,  Tbit = 0.520833 ms.
• Time to send 1 packet = (2 +  Lpkt)*Tbit = 5.20833 ms.
• Total sequence length,  TSync = (2*Lseq)/Lpkt * 

(2 +  Lpkt)*Tbit = 333.333 ms.
• Number of UART packets, M = 3.
• Size of sliding De Bruijn window, Lwnd = 8.

Every Tp_Slave, the receiver will wake up and read 3 
UART bytes (24 hardware bits), representing 12 De Bruijn 
bits. Since Lwnd = 8, this maps to N = 5 sliding windows as 
depicted in Fig. 11.

Recall that each received window has a unique position 
within the whole De Bruijn sequence. As such, the slave 
makes sure these windows are ordered in a way consist-
ent with the proposed protocol. It then proceeds to calcu-
late the exact time. The following equation is used by the 
receiver to determine the current time, where Δt is added 

Microphone

Insulation

Fig. 15  The microphone in the Five Insulation Edges (FIE) configu-
ration

Microphone

Metal Plate

Fig. 16  The microphone in the Metal Plate (MP) configuration

MicrophoneInsulation

Metal Plate

Fig. 17  The microphone in the Metal Plate with Four Insulation 
Edges (MPFIE)
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to the previous time stamp to calculate the exact time of 
reception of the latest synchronization packet.

The transmission delay is about 2.91 ms per meter of air 
at 20 °C. Calculating the exact delay depends on the distance 
between the speaker and microphone. A simple protocol 
similar to the ones described in [16] and [17] can be utilized 
at the initialization of the system so that each receiver will 
know its exact location relative to the speaker and calculate 
the delay needed for the signal to reach it accordingly.

4.3  Accuracy and performance

To test the performance of the system, a set of 512 packets 
that carry the De Bruijn sequence is transmitted through 
the speakers at varying offsets of 10 cm from the receiver 
circuit. The 512 packets are sent over five trials, one for each 
microphone setup, and the results are presented in Fig. 18, 
Table 2, and Fig. 19.

As presented earlier, the receiver should wake-up and 
attempt to receive 5 sliding widows (N = 5) which map to 
3 UART packets (M = 3). By checking the bit patterns in 
the received windows with the De Bruijn sequence, the 
receiver can deduce if the received windows are correctly 
following the sequence. The reception of three consecutive 
correct UART packets provides the needed 5 sliding win-
dows and the receiver has all the information required to 
re-synchronize. Thus, in the discussion to follow, the recep-
tion of 3 consecutive correct UART packets is referred to as 
the reception of a correct sequence and this also represents 
a resynchronization.

Figure 18 plots the number of correct sequences that are 
received from the original 512 packets. The results of five 

ti = ti−1 + Δt, where Δt = Tp_Slave +
(

Pi − Pi−1

)∗(

2 + Lpkt
)∗
Tbit

Δt = 60000ms +
(

Pi − Pi−1

)∗
5.20833ms

trials representing the different microphone setups are rep-
resented by the following labels: 1—Standalone, 2—OIE, 
3—FIE, 4—MP, and 5—MPFIE. The setups are depicted in 
(Fig. 14 to Fig. 17).

The plotted results in Fig. 18 prove that the Standalone 
and FIE setups are the worst performers as they provided 
the least amount of correct sequences at all distances. In 
the results for distances that are at 80 cm and below, the 
OIE setup provided the largest amount of received correct 
sequences, while the metal plate helped in providing the 
better results for distances of 90 cm and above. The best 
performer in the 90 cm and above separation is the MPFIE 
setup. It can be concluded that at the larger distances, the 
reflections from the metal plate helped in reconstructing the 
signal in a similar fashion to a boundary effect microphone, 
while at smaller distances, the insulation helped in minimiz-
ing the effect of the destructive reflections.

A reception of a correct sequence implies resynchroniza-
tion. Thus, from the above presented experimental values, 
it is obvious that there are resynchronization opportunities 
at all the separation distances up to 250 cm which is the 
limit of reliable reception of correct sequences. The issue to 
tackle now is the mean time required for a receiver to wake 
up and receive a correct sequence to be able to synchronize. 
Especially when using the OIE setup for distances 80 cm 
and below and the metal plate setups (MP or MPFIE) for 
distances larger than that.

When a receiver wakes up to synchronize, it faces two 
situations. Either there is a sequence being transmitted or 
not. In case there are no sequences being transmitted, the 
receiver needs to stay awake for a maximum of Tp_Master till 
the next synchronization sequence arrives. If the receiver 
awakes and the sequence is being transmitted, then some 
packets have already been missed. The receiver has to wait 
till it receives 3 correct UART packets (a correct sequence) 
to be able to re-synchronize. For the five microphone setups, 
512 UART packets have been sent and the received packets 
were recorded on the receiver’s side. These recorded packets 

Fig. 18  The number of received 
correct sequences from the 
set of 512 sent packets (510 
total sequences). A correct 
sequence is three consecu-
tive correct received UART 
packets. The three packets are 
needed to derive the location 
of the bit pattern in the De 
Bruijn sequence and thus lead 
to resynchronization. Any data 
point on the plot above signifies 
a successful synchronization 
instance
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provide a timeline of what the receiver would see when it 
wakes up. Each packet reception initiated a counter as to 
when a correct sequence would be received. That timing data 
was gathered for all the reception slots that would receive a 
correct sequence and the mean time to synchronize is pre-
sented in Table 2. It is to be noted that the slots of reception 
that occur after the last correct sequence is received will 

have to wait for Tp_Master before being able to synchronize. 
The data points denoted by “No Sync.” in Table 2 highlight 
some cases that would not be able to synchronize. There 
are multiple cases for the Standalone, OIE, and FIE setups, 
one case for the MP setup, and no such case for the MPFIE 
setup. If we assume that a metal plate will be used (MP 
and MPFIE) for distances 90 cm and above, and that an 

Table 2  The mean time till successful re-synchronization at the dif-
ferent distances and for the five microphone setups. The “No Sync.” 
entry denotes the cases in which re-synchronization was not success-

ful. For distances below 90 cm, the OIE setup was always successful 
while the MP and MPFIE setups were always successful for distances 
90 cm and above

Separa�on Mean Time Till Successful Synchroniza�on (ms)
Distance (cm) Standalone OIE FIE MP MPFIE

40 841.16157 536.18859 464.39976 15.62499 502.74019
50 No Sync. 109.09491 892.01641 26.78570 15.62499
60 31.24998 43.73767 521.18992 15.62499 331.83469
70 115.36506 29.35325 No Sync. 15.62499 376.66463
80 132.87482 64.94008 No Sync. 15.62499 475.58030
90 252.76060 461.93275 No Sync. 15.62499 92.51786

100 244.45049 125.94689 No Sync. 21.63460 52.36023
110 153.23238 161.06166 No Sync. 337.94653 44.41434
120 214.78580 432.42756 367.22501 73.10873 65.32968
130 299.23501 71.03014 263.60504 79.53981 39.79041
140 64.35181 94.34329 276.75480 46.61901 45.12853
150 430.28058 No Sync. No Sync. 86.66082 79.36552
160 416.86189 149.30159 39.06248 96.93634 35.03786
170 908.47816 361.68445 41.66664 111.04322 44.51687
180 No Sync. No Sync. No Sync. 90.24354 73.63826
190 No Sync. 401.16008 455.06013 121.32147 291.06602
200 No Sync. 677.08290 274.90975 255.83789 114.45999
210 589.11037 No Sync. No Sync. 15.62499 176.77555
220 No Sync. No Sync. No Sync. 589.00450 885.43155
230 No Sync. No Sync. No Sync. 145.25705 88.71659
240 No Sync. No Sync. No Sync. 101.97072 86.84810
250 No Sync. No Sync. No Sync. 244.45582 223.77742

Scheme successful 
at all distances

Scheme successful 
at all distances

Fig. 19  If the receiver wakes 
up while the sequence is being 
transmitted and still able to 
receive a correct sequence, then 
that is counted as a success-
ful synchronization. There are 
512 packets being sent which 
amount to 510 opportunities 
to synchronize, the number 
of successful opportunities is 
presented in the chart
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insulating plane will be used (OIE) for distances lower than 
90 cm, then the OIE, MP, and MPFIE setups will always 
synchronize. Synchronization will occur in either the current 
synchronization sequence or the one after. Figure 19 plots 
the number of successful synchronizations within the 510 
windows when the receiver wakes up while the sequence is 
being transmitted. A receiver that wakes up at exactly the 
time the sequence is being received has the chance to benefit 
from all the presented opportunities. A receiver that wakes 
in the middle of the transmission has a higher chance of 
missing the successful receptions. In all aspects, the receiver 
will be able to synchronize in either the current cycle or the 
one next (the receiver will be actively awake when waiting 
for the next cycle and thus can benefit from all the opportu-
nities). Given the right choice of the microphone setup, the 
receiver will always synchronize up to a distance of 250 cm. 

There are multiple aspects that can be utilized in the system 
to further enhance these results and provide implementations 
that can successfully increase the distance of separation sig-
nificantly beyond the 250 cm. These aspects would include 
better components on the microphone and speaker side: 
particularly speakers that can handle the abrupt nature of a 
square wave. Another important aspect is the introduction 
of bit error correction to the scheme. Error correction can 
benefit from redundant data and/or the predictable nature of 
the De Bruijn sequence data.

4.4  Indirect, non‑line of sight, and noisy 
environment results

The results provided earlier focused on highlighting the 
ability to synchronize with increasing separation distance 
between the speaker and microphone under varying setups 
while keeping a direct line of sight and having the speaker 
and microphone squarely facing each other. This section pro-
vides data of three different experiments, the first has the 
planes of the microphone and speaker at a 45 and 90 degrees 
instead of being parallel, the second provides data with an 
obstacle breaking the line of sight as shown in Fig. 20, and 
the third runs the experiment while noisy generator units 
are running.

4.4.1  Indirect experiment

The results of the experiment are presented in Table 3. It 
can be seen that the number of correct sequences received is 
diminished when compared with the original case presented 
in the previous section. This decrease does not prevent 

Microphone Speaker

Fig. 20  A cardboard obstacle placed in the middle of the path 
between the speaker and microphone

Table 3  The results of the experiment with the planes of the microphone and speaker at an angle of 45 degrees and 90 degrees respectively. The 
results prove that synchronization is still possible but with lower performance especially with the 90 degrees case

# correct sequences Mean Time Till Successful Synchroniza�on (ms) # successful syncs out of 510 slots

Angle 
(deg)

Distance 
(cm) MPFIE FIE Stand

alone MP OIE MPFIE FIE Standalon
e MP OIE MPFIE FIE Stand

alone MP OIE

45

100 123 2 14 4 0 49.08 15.62 325.40 15.62 No Sync. 512 2 378 4 0

150 59 4 0 20 7 74.56 467.58 No Sync. 407.17 413.06 489 512 0 333 273

200 22 0 15 19 0 243.59 No Sync. 242.41 250.37 No Sync. 400 0 458 448 0

250 20 0 0 51 0 138.53 No Sync. No Sync. 93.66 No Sync. 437 0 0 488 0

300 6 0 0 7 0 277.79 No Sync. No Sync. 401.57 No Sync. 337 0 0 373 0

90

100 0 0 3 23 0 No Sync. No Sync. 689.08 176.92 No Sync. 0 0 498 474 0

150 4 0 0 48 1 293.24 No Sync. No Sync. 187.76 18.23 331 0 0 467 2

200 0 0 0 5 1 No Sync. No Sync. No Sync. 449.25 39.06 0 0 0 363 10

250 0 0 0 16 0 No Sync. No Sync. No Sync. 231.85 No Sync. 0 0 0 322 0

300 0 0 0 12 0 No Sync. No Sync. No Sync. 360.36 No Sync. 0 0 0 474 0

Scheme 
successful at
all distances

Scheme 
successful at
all distances

Scheme 
successful at
all distances
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synchronization especially with a metal plate. With both 
the MP and MPFIE setups a significant number of correct 
sequences is received and synchronization is successful for 
all the considered distances with a 45 degrees angle (except 
for the 50-cm case for MP). With the 90 degrees case, only 
the MP setup was successful with synchronization at all the 
distances. Table 3 also presents the mean time till successful 
synchronization and the number of successful synchroniza-
tion out of the 510 slots.

4.4.2  Obstacle

To verify the operation of this synchronization mechanism 
where a no direct line of sight is available, an obstacle was 
placed between the speaker and microphone as depicted in 
Fig. 20. The obstacle did diminish the number of correct 
sequences received as reported in Table 4, but the circuit was 
still successful in synchronizing between 150 and 300 cm 
separation in the MP setup. As can be deduced from the 
results, the insulation had a negative effect on the overall 
performance in such a case.

4.4.3  Noisy environments

To study the effect of noisy environments on the perfor-
mance of the system, we conducted the experiment in an 
electric power systems lab area that has significantly noisy 
generator units using the MP configuration. Table 5 pro-
vides the number of received correct sequences with the 
generator units on and off. The provided results clearly show 
the detrimental effect of noise on the number of received 
sequences as there is a large observed decrease in the num-
ber of sequences in the noisy case.

5  Concluding remarks

This work attempts to create a wireless synchronization 
scheme for simple extant smart devices using sound. The 
proposed scheme synchronizes multiple devices in one room 

from one master in a broadcast fashion. One of the advan-
tages of this scheme is that synchronization is carried out 
in an offline fashion with only the separation distance as a 
restriction on the physical positioning of the devices. Moreo-
ver, the hardware requirement is a minimum. On one hand, 
the master only needs access to a speaker and thus any PC 
can initiate synchronization. On the other hand, the deployed 
devices only need to have a UART, a microphone, and a 
conditioning circuit (refer to Fig. 12).

Another aspect of this design is using serial communica-
tion instead of sampling with analog to digital converters. 
The received signal is amplified and clipped using basic 

Table 4  The results of the experiment with an obstacle in the path between the speaker and microphone that prevents a direct line of sight. The 
results prove that synchronization is still possible but with lower performance.

# correct sequences Mean Time Till Successful Synchroniza�on (ms) # successful syncs out of 510 slots

Ob
st

ac
le

Distance 
(cm) MPFIE FIE Stand

alone MP OIE MPFIE FIE Standalone MP OIE MPFIE FIE Stand
alone MP OIE

150 0 0 0 12 0 No Sync. No Sync. No Sync. 207.27 No Sync. 0 0 0 347 0

200 2 0 0 12 1 445.63 No Sync. No Sync. 432.38 1346.35 319 0 0 512 512

250 3 0 0 6 0 432.21 No Sync. No Sync. 702.87 No Sync. 307 0 0 365 0

300 0 0 1 17 0 No Sync. No Sync. 54.69 441.42 No Sync. 0 0 16 476 0

Scheme 
successful at
all distances

Scheme 
successful at
all distances

Scheme 
successful at
all distances

Table 5  The number of received correct sequences from the set of 
512 sent packets (510 total sequences). A correct sequence is three 
consecutive correct received UART packets. The three packets 
are needed to derive the location of the bit pattern in the De Bruijn 
sequence and thus lead to resynchronization. The noise from the gen-
erator units significantly decreased the number of these received cor-
rect sequences

Separation distance (cm) Number of received correct sequences 
(MP)

Generators off Generators on

100 2 0
110 6 0
120 6 0
130 7 5
140 7 4
150 11 10
160 24 4
170 21 2
180 24 8
190 20 8
200 18 11
210 27 2
220 37 8
230 50 24
240 54 19
250 53 18
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circuit design and read as digital data by the processor as 
seen in Fig. 12. Dropping the analog to digital sampling of 
the signal allowed for relaxing the memory requirements. In 
fact, the authors of [13] specified that in order to handle the 
memory requirements of heavy sampling, their approach had 
to rely on an online solution. Another advantage of dropping 
the analog to digital sampling is that some processors do not 
have built-in analog-to-digital converters and rely on exter-
nal samplers which might not be available in many devices. 
However, most processors do have a UART or SCI port. 
Finally, using a serial port is less computationally complex 
than data sampling and the accompanying calculations.

Using a basic processor and a regular speaker also means 
that a transmitter can be created on a personal computer 
without the need for an independent device. The transmitter 
code can be created as a simple script that can be easily run 
on the computer. Once this script is activated, the data will 
be transmitted using the preexisting computer speakers.

Overall, the presented system was able to reliably trans-
mit and receive the synchronization sequence over a distance 
of 250 cm. If we consider the MPFIE setup, then the mean 
synchronization time is 183.14 ms for the case when the 
receiver wakes up during a synchronization sequence for all 
separation distances or has an upper bound of approximately 
Tp_Master for the case when the receiver wakes and is required 
to wait till the next synchronization sequence. The system, 
especially with the MP setup, was successful in synchroni-
zation when the planes of the microphone and speaker were 
not parallel and also with an obstacle that blocks the line 
of sight.

6  Future work

Two main areas are to be considered in enhancing the work 
presented in this manuscript; the first is extending the range 
of the system, and the second is working in insecure areas to 
prevent among others a false sequence from being presented 
to the system. The utilized constraints of cheap and simple 
hardware such as the electret microphone with the condition-
ing circuit and utilizing a UART in handling the physical 
layer communication had an adverse effect on the range of 
the system. Relaxing these constraints by using more spe-
cialized speakers, microphones, and sound cards along with 
utilizing bit error correction or modulation techniques could 
help in increasing the distance over which reliable synchro-
nization sequence communication can be attained. To test 
this assumption, we used Frequency Shift Keying to encode 
a “0” as a 18 kHz sinusoid and a “1” as a 20 kHz sinusoid 
in a similar fashion to what was presented in [38] which 
also helped us in working with inaudible signals. We also 
relaxed all the hardware constraints and utilized the micro-
phone and soundcard of a Thinkpad Carbon X1 to receive 

the signal and demodulate it with a Matlab code. The bit 
duration was extended dramatically from 0.52 to 100 ms. 
This new setup helped in reliably receiving synchronization 
sequences in ideal (line-of-sight, no obstacles, and no major 
noise sources) outdoor and indoor environments with a 20-m 
and 30-m separation respectively. We will build on this out-
come to gradually increase the hardware complexity from 
what was presented in this manuscript and work towards 
achieving the ideal balance between cost, speed, and range 
in more demanding environments.

The other area for improvement is security. The method 
presented in the manuscript broadcasts the synchronization 
sequence openly where it is deployed. In case a potential 
attacker gains physical access to the area, they can insti-
gate a man in the middle attack. Encryption of the sequence 
between sender and receiver should help in mitigating some 
of the security concerns of openly broadcasting the synchro-
nization sequence. Other techniques should also be studied 
to prevent an attacker from simply recording the sequence 
and transmitting it at varying intervals.
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