
Vol.:(0123456789)1 3

https://doi.org/10.1007/s12243-021-00877-5

A novel offline indoor acoustic synchronization protocol: experimental
analysis

Zahi Nakad1 · Mohammad Ali Sayed1 · Anthony Yaghi1 · Harag Margossian1 · Wissam Fawaz1

Received: 8 October 2020 / Accepted: 9 August 2021
© Institut Mines-Télécom and Springer Nature Switzerland AG 2021

Abstract
Smart electronic devices are playing a fundamental role in modern home and industrial applications. The increased reliance
on such devices, especially in time critical and secure applications, intensifies the need for time synchronization among
multiple devices. This work presents a novel audio-based, cheap, offline synchronization method, whereby multiple slaves
synchronize simultaneously to a master within a single room. Synchronization is carried out under the proposed protocol
in a way that is independent of the physical location of the target devices, which in turn are not required to have any sort of
network connectivity. The proposed method relies on the transmission of a De Bruijn sequence that holds the information
required for the slaves to synchronize. The effectiveness of the proposed synchronization protocol is validated through an
in-house experimental setup. Synchronization at distances of up to 250 cm between the master and a slave was achieved.

Keywords Audio signals · De Bruijn sequence · Synchronization

1 Introduction

As smart electronic devices are becoming more abundant,
we are becoming more dependent on their operation in the
different aspects of our lives. As a direct result, their accu-
rate timing is becoming a more important requirement than
ever before. Synchronization is required for applications
ranging from small-scale smart homes to the operation of the
power system. In [1], the authors discuss the synchronization
of home appliances and devices connected to a single home-
area network. The need to synchronize indoor networks of
sensors to govern the efficient operation of an HVAC (heat-
ing, ventilation, and air conditioning) system is presented in

[2]. In [3] and [4], the importance of properly synchronized
measurements for the operation of the power system is high-
lighted. Without proper time stamps, the system state esti-
mated based on these measurements can be incorrect leading
to misguided and sub-optimal decision making. This in turn
can reduce the reliability and/or efficiency of the entire sys-
tem. Synchronization in power systems is needed not only
for wide area network measurements but also for compo-
nents within a single control room/substation.

Several synchronization schemes are available to ensure
that multiple devices are synchronized to a common time
reference or a master clock. These methods range from using
an Internet connection [1, 5–7], a Global Position System
(GPS) timestamp [3, 8–10], repetitive pulses of FM (fre-
quency modulation) signals [11], radio frequency (RF) sig-
nals [12], and light [13]. However, each of these schemes has
its drawbacks that this work attempts to address. In network-
connected applications, there is always the possibility that
the Internet connection is lost or subject to a delay or denial
of service (DoS) attack [14]. A GPS signal has been proven
to be vulnerable to spoofing [15–17]; the authors in [18]
even proposed a method for the development of a portable
civilian GPS spoofer. Although the reliability of RF sig-
nals has been proven and there is an abundance of standards
governing their operation, the needed hardware for using
this type of communication might not always be available

 * Wissam Fawaz
 wissam.fawaz@lau.edu.lb

 Zahi Nakad
 zahi.nakad@lau.edu.lb

 Mohammad Ali Sayed
 mohammadali.sayed@lau.edu

 Anthony Yaghi
 anthony.yaghi@lau.edu

 Harag Margossian
 harag.margossian@lau.edu.lb

1 Lebanese American University, Byblos, Lebanon

/ Published online: 18 August 2021

Annals of Telecommunications (2022) 77:221–236

http://orcid.org/0000-0002-8012-1157
http://crossmark.crossref.org/dialog/?doi=10.1007/s12243-021-00877-5&domain=pdf

1 3

on preexisting devices requiring synchronization. When it
comes to the light-based and camera approaches, the opera-
tion depends on a direct line of sight (LOS) which stands
firmly in the way of concurrent practical synchronization of
multiple devices.

In light of the above discussion, the objective of this
study is the creation of a wireless broadcast synchronization
scheme that is accurate, simple to implement, energy effi-
cient, offline, cheap, and that uses basic ubiquitous hardware
components. This is achieved by the use of audio signals
as a medium for synchronization. One of the main require-
ments underlying the operation of the proposed system is the
ability to concurrently synchronize multiple smart devices
present in the same room. The first reason behind using
sound is the availability of the required hardware on most
smart devices. The second reason lies in its ability to enable
devices to communicate together without being connected
to a common network. Finally, LOS is not required as this
scheme takes advantage of the broadcast nature of sound.
The authors of [19] address the use of inaudible sound for
indoor synchronization purposes. They focus on a method
that can mitigate the long time required for estimating the
starting phase in using De Bruijn sequence by utilizing a
table-lookup method instead of correlation. To the best of
the authors’ knowledge there are no other research work
that addresses using De Bruijn sequence for synchroniza-
tion using acoustic signals.

Audio signals have been used to transmit data for com-
mercial purposes by several companies. One such example is
Chirp [20]. Chirp uses sound waves to transmit data between
different devices which are only required to be equipped
with a microphone and speaker. Acoustic signals have been
utilized to classify events in surveillance systems [21].
Sound has also been used for underwater communication
and synchronization purposes and was the subject of mul-
tiple studies. As an example, the authors of [22] provide a
review of biologically inspired covert underwater acoustic
communication, and the work presented in [23] provides a
routing metric for multi-hop underwater acoustic metrics.
On the other hand, the work presented in [24] and [25] aims
at synchronizing multiple devices referred to as nodes. The
authors of [24] present a method that is based on pairwise
communication between nodes to overcome clock drift and
keep the multiple slave nodes synchronized to a master node.
In contrast, the method proposed in [25] takes advantage of
the broadcast nature of sound for more efficient communica-
tion. These nodes are synchronized to several devices in the
system having accurate time stamps. Both [24] and [25] will
be further discussed in Section II.

This work utilizes the Universal Asynchronous Receiver
Transmitter (UART) transceivers of two simple processors
(PIC 18F4550), one to broadcast the synchronization signal
and the other to receive it and synchronize the receiver’s

clock accordingly. The strength of this scheme is that it can
be implemented on preexisting processors of almost any
smart device without the need for extra processing power.
The implementation of this scheme only requires UART
transceivers with a microphone and a signal conditioning
circuit. In [13], the authors utilized a De Bruijn sequence
[26, 27] to help in achieving energy efficiency by requiring
that the receiver only wake up to a portion of the synchro-
nization signal and still synchronize correctly, as discussed
further in Section II. This is a direct consequence of the De
Bruijn sequence property stipulating that any specific n-bit
window in such a sequence is found at a unique location
within a 2n bit sequence [26, 27]. For this reason, the De
Bruijn sequence was adopted in this work to send synchro-
nization data.

The next section gives a summary of the related studies.
Section III describes the system design. Section IV reports
the experimental results. Finally, Section V concludes the
paper.

2 Background

A raft of studies has considered the topic of time synchro-
nization. The work in [7] described the effect of clock drift
problems on applications requiring common timing. The
authors addressed the importance of overcoming this clock
drift via the Network Time Protocol (NTP). This would
ensure that all devices connected to the Internet will main-
tain the same accurate timing.

The work in [6] demonstrates through an experiment the
ability of Precision Time Protocol (PTP) to synchronize pha-
sor measurement units (PMUs) in a power system. This is
done by synchronizing a GrandMaster clock (GM) to UTC
via a GPS receiver and then connecting its output to the
PMU’s clock. The latter exchanges IEEE 1588 synchroni-
zation messages with the GM to reconstruct the exact time
reference. However, PTP is vulnerable to desynchronization
attacks as described in [14]. In addition, synchronization
attacks can be used to manipulate phase angle measurements
and act as false data injection attacks against state estimation
as described in [28].

The authors of [8] tested the possibility of synchro-
nizing multiple standalone devices to the time stamp of
a GPS signal. Note that GPS signals are mainly used to
provide accurate positioning but have extremely precise
time stamps as a byproduct. This byproduct is due to the
precise timing requirements of satellites needed for proper
operation. The authors described how to utilize the data
available in a GPS signal by extracting the exact, sta-
ble, and common time stamp to be used for correcting
the drift of internal clocks in the considered devices. The
observed results showed that two devices were able to be

222 Annals of Telecommunications (2022) 77:221–236

1 3

synchronized to the exact UTC timing with a mean rela-
tive accuracy of 2.9 ns in a 24-h period and − 1.3 ns in a
1-week time period. It is also important to note that the
peak error was observed in the 1-week scenario and found
to be equal to 550 ns. In both [6] and [8], GPS signals
were successfully used to synchronize the clocks of vari-
ous elements. This work did not consider the use of GPS
signals for synchronization due to the fact that they are not
available indoors and that most simple smart devices do
not have GPS modules. In addition, GPS signals are known
to be vulnerable to spoofing [15–18].

In [11], the authors proposed a synchronization scheme
based on FM radio. A new FM receiver was designed with
the ability to extract a periodic pulse from FM broadcasts,
referred to as the RDS (Radio Data System) clock. This peri-
odic pulse was then used as the message to which devices are
synchronized. This scheme was tested in a lab for a period
of 6 days as well as in a vehicle moving in a metropolitan
area of 40 km2. The experiment showed that this scheme is
stable and hence is a viable means for calibrating the clocks
of large-scale sensor networks.

The scheme also predicts the drift error and calibrates
the different device clocks via the RDS clock. The results
showed that this scheme was able to achieve accurate and
precise clock synchronization across the different devices.
The main disadvantage of this synchronization scheme is the
need for an FM receiver on each smart device.

The authors of [24] provided a scenario with multiple
underwater nodes communicating with one another using
sound waves. These nodes are distributed such that each
node is in communication with a maximum of six geo-
graphically close nodes and synchronized to a master node
called node zero. In this communication scheme, a sending
node is targeting a specific receiver while a receiver node
can receive data from multiple nodes. A time multiplex-
ing scheme was used to overcome interference between
data packets. Dead time between time slots is introduced to
guarantee correct reception. This dead time is equal to the
transmission delay and an extra guard time so that the echoes
of the previous packet would die out before another packet
is expected to be received. Node zero begins a pairwise syn-
chronization scheme by sending an initialization packet to
node one and records the time it sent this message. When
node one receives this packet, it sends back a synchroniza-
tion packet of its own with the receive time in the header.
Node zero takes note of the time and calculates the delay
between these two nodes. It then sends back a packet with
these time stamps to node one so that it would calculate
the delay as well. This process is repeated between every
pair of nodes that can communicate with one another. The
authors of [24] were able to synchronize and communicate
data between multiple nodes using sound waves while tak-
ing into consideration the effect of echoes and interference.

The authors of [25] also describe an underwater com-
munication scheme using sound waves between multiple
active nodes. This scheme defines upper hop and lower hop
directions for communication and also differentiates between
beacon nodes that have exact time stamps and regular nodes
that relay information. When a new beacon is introduced,
it broadcasts a notification with hop number 1 and its own
ID. A regular node that receives this notification adds this
beacon’s ID to its lower hop neighbor set. The regular node
then increments its hop number with respect to this bea-
con and broadcasts its ID with the its updated hop number
relative to that specific beacon. Any regular node receiving
this broadcast updates its hop distance with respect to the
beacon. This way a node knows its own hop distance with
respect to a specific beacon as well as the hop information
of all its neighbors from that beacon. Whenever a regular
node wants to synchronize, it broadcasts a request asking for
synchronization from its lower hop neighbors. It records the
time it sent this request and the time it received an answer
as well as the send and receive time stamps of the neigh-
bors answering this request. This pairwise synchronization
is iterated for added accuracy. The original request is then
transmitted all the way down the hop chain to the beacon
and back from the beacon to the node that sent it. Due to
the broadcast nature of the requests and replies, the node
will have time stamp data from all its lower hop neighbors
originating from several beacons. In summary, the proposed
scheme in [25] was successful in synchronizing scattered
nodes using audio signals underwater.

The work in [26] proved the existence of unique sets of
periodic sequences later referred to in the literature as De
Bruijn sequences. The main property of these sequences is
that any n consecutive digits can be found uniquely at one
and only one location within a 2n cycle. The background on
the applications of the De Bruijn sequence is quite exten-
sive, the following attempts to highlight some of the applica-
tion areas that have used this sequence. In communication
systems, for example, the work in [29] investigated the use
of the De Bruijn sequence as user spreading codes in DS-
CDMA systems; while the authors of [30] propose using an
even–odd equivalent (EOE) pseudo De Bruijn sequence for
primary synchronization of private mobile radio (PMR) over
LTE to increase security. In [31], the researchers investigate
the use of constrained De Bruijn sequence in correlation
with racetrack memories to correct synchronization errors
such as deletions and sticky insertions. Meteroid trajecto-
ries can be recorded by using long-exposure fireball pho-
tographs. Then by using periodic shuttering, the meteoroid
velocity can be determined. The researchers in [32] prove
that by using a De Bruijn sequence to drive the periodic
shutter, they were able to eliminate the need of a separate
subsystem to record absolute fireball timing and were able to
reach sub-millisecond resolution. The work in [13] proposes

223Annals of Telecommunications (2022) 77:221–236

1 3

a synchronization scheme that uses LEDs and visible light as
the medium for signal transmission and that targets energy-
constrained devices. Under this scheme, the receiver is only
required to be awake for a portion of the synchronization
signal and then goes back to sleep. The receiver then wakes
up before the synchronization point is reached and performs
heavy sampling to obtain the exact synchronization point.
This large amount of data was then processed with the help
of an online algorithm. The De Bruijn sequence was used
as the synchronization signal. The list of applications of
this sequence is quite extensive and covers expansive areas
of research, the provided examples only skim the surface.
Our specific application of using this sequence for clock
synchronization is closest to the manner used in [13]. The
receiver in our approach does wake up periodically to catch
the synchronization sequence, but the synchronization is
done by utilizing the timestamps of the received packets
and synchronizing back to the initial point of the sequence,
which differs significantly from the technique presented in
[13]. The visible light scheme used in [13] was not utilized
due to its reliance on LOS that greatly limits its feasibility to
synchronize multiple components in one room.

In light of the above discussion, our proposed scheme
utilizes sound wave communication and a De Bruijn
sequence to achieve synchronization in an indoor scenario.
The following section focuses on the novelty of the design.
The main contribution of this work can be summarized as
follows:

1) The development of a novel cost-effective offline acous-
tic-based synchronization scheme.

2) The implementation of a hardware prototype with a view
to verifying the validity and analyzing the performance
of the proposed scheme.

3) Experimental investigation of the effects of different
microphone setups (using insulation, metal plate) on
the directivity and reach of the acoustic synchroniza-
tion scheme.

The proposed scheme can be the primary synchronization
mechanism in rooms that are not inhabited. Alternatively,
it can be used as a backup offline system that does not run
continuously, in which case its main use would be to handle
any error or detected cyber-attack compromising the primary
synchronization mechanism.

3 System design

The proposed synchronization system operates in a mas-
ter–slave mode. In particular, the master has the responsibil-
ity of acoustically transmitting the De Bruijn-based synchro-
nization sequence to the slave devices; which in turn utilize

the received sequence to adjust their clocks. The master and
slaves are assumed to be located within a room.

3.1 Proposed protocol

The master sends the synchronization sequence once every
Tp_Master time units and the whole sequence lasts TSync time
units. Note that the specifics of the synchronization sequence
are addressed in Section III.B. Figure 1 provides a state dia-
gram that describes the role of the master which will be trig-
gered at periodic intervals of length Tp_Master to broadcast the
synchronization sequence throughout the room. The master
has two modes of operation, either sending the synchroniza-
tion sequence or waiting for the trigger to send the sequence.
Depending on the type of application and its timing require-
ment, the length of the periodic intervals when the synchro-
nization sequence should be sent and received will vary.

The slave device on the other hand is required to wake
up and listen to catch the synchronization sequence, wak-
ing up periodically every Tp_Slave time units. For illustration
purposes, if we assume that the slave device is already syn-
chronized to the master, the clock drift is less than TSync, and
Tp_Master = Tp_Slave, then the slave will always wake up while
the synchronization sequence is being transmitted and as
such will be able to re-align its clock with that of the master
as illustrated in Fig. 2. This is the optimal operational mode
that the system will always attempt to reach. Figure 3 depicts
the state diagram of the slave under the various expected
situations. The slave first wakes-up (Wake – Up state) by a
trigger at Tp_Slave and listens to check if the synchronization
sequence is being received by its signal conditioning cir-
cuit. If the sequence is being received the operation moves
to the Receive N Windows state depicted in Fig. 3; other-
wise, the slave will go into the Wait, Active Receiver state.
While in the latter state, the slave will actively wait for the
synchronization sequence. Upon the detection of the syn-
chronization sequence, the slave transitions to the Receive
N Windows state. The value N, which represents a portion
of the sequence sent by the master, is chosen based on the
specific parameters of the utilized De Bruijn sequence as

Send
Synchroniza�on

Sequence
Wait

Sending Sequence
Completed

Trigger at Tp_Master

Fig. 1 State diagram for the master

224 Annals of Telecommunications (2022) 77:221–236

1 3

will be explained in Section III.B. On the successful recep-
tion of N windows, the slave moves to the Synchronize state
where the information from the received windows is used
to re-align the slave’s clock with that of the master. In this
case, the slave can go to the inactive low-power state Sleep
and will wake up after a Tp_Slave period elapses. In case the
N windows reception was not successful, the slave moves to
the Read Extra Window state. In this state, it will continue
receiving windows till N consecutive correct windows are
received and the slave can thus move to the Synchronize
state to re-adjust its clock, as explained in Section III.B.
If the synchronization sequence ends before a successful
reception occurs, the slave has to move to the Wait, Active
Receiver state awaiting another sequence, representing the
least optimal operation of this scheme as illustrated in Fig. 4.
A detailed example is provided in the following sections to
fully explain the operation of the proposed protocol.

It is worthwhile noting that Tp_Master and Tp_Slave are set
according to the requirements of the specific application. For
an application having stringent convergence requirements,
the master can transmit the synchronization sequence con-
tinuously while slaves wake up at short intervals.

3.2 Synchronization sequence and encoding
scheme

With a De Bruijn sequence, it is enough for the receiver to
detect an n-bit window to identify the current position in
the transmitted sequence. This concept is highlighted in a
simplified example that follows.

Consider a 4-bit window sequence of length 24 (16 bits)
such that the sequence Seq = 0 0 0 0 1 0 0 1 1 0 1 0 1 1 1 1
and the windows are called W1, W2, W3… The first window
is the first 4 bits (W1 = 0 0 0 0); the second window is bits 2

Fig. 2 Best case scenario
where slaves always wake up
during the transmission of the
synchronization sequence and
re-synchronizes with the master Master

Slave

Slave awakens
within TSync

Slave awakens
within TSync

Re-synchroniza on
Clock
Dri

Time

Tp_Master Tp_Master

TSync

Tp_Master

Tp_Slave Tp_Slave

Tp_Master

TSync TSync TSync

Fig. 3 State diagram for the
slave

Wake - Up

Receive N
Windows

Wait,
Ac�ve

Receiver

Sequence Recep�on
Ac�ve

Synchronize

Read Extra
Window

Unsuccessful
Recep�on

Sleep

Sequence Ended

225Annals of Telecommunications (2022) 77:221–236

1 3

to 5 (W2 = 0 0 0 1); sliding the window one bit at a time the
remaining windows are constructed as depicted in Fig. 5. As
a reference, Table 1 lists all the possible 4-bit windows from
the De Bruijn sequence Seq.

Examining this sequence shows that any 4-bit window
has a unique position within the sequence. Hence, in an
error-free De Bruijn sequence, it is enough to read 4 bits
to determine the current location within the entire 16 bits.
An additional feature of a De Bruijn sequence is its ability
to easily detect errors. To compensate for the possibility of
errors, m extra bits are read and error detection is carried out
as demonstrated below.

Assuming the transmitted signal is given by Tx = 0 1 0 0 1
1 0, the De Bruijn windows are W4, W5, W6, and W7. Due to
noise the signal is received as Rx = 0 1 0 0 1 1 1 and decoded
as W4, W5, W6, and W12 as illustrated in Fig. 6. Since a W12
window is received in lieu of a W7 one, the W12 is identified
as erroneous.

Given that UART was used for the hardware connection
with an 8-bit transmission unit, an 8-bit window 256-bit-
long De Bruijn sequence was used as our synchronization
sequence. In order to avoid the presence of long sequences
of 0 s and 1 s, we decided to use differential Manchester
encoding to transmit 01 for a logic 0 value of the De Bruijn
sequence and 10 for a logic 1. This encoding scheme has
been proven to be effective in several communication fields
[33–36]. In contrast, the price of using such a scheme is that
it requires double the bandwidth with each 8-bit De Bruijn
window being transmitted as 16 bits.

3.3 Synchronization

For ease of discussion, a parameter naming scheme was
adopted to represent the variables in the system. The
variables providing time values start with “T”, while “L”
is used for bit length amounts. In addition to these, Seq
is used to represent the De Bruijn sequence in question
and Wi represents the window at ith interval in Seq. As

Fig. 4 Worst case scenario
where slave misses TSync and
has to actively listen for the
sequence. Slave then fails to
receive sufficient windows to re-
synchronize and actively listens
again for another cycle

Master

Slave

Slave awakens
outside TSync

Slave fails to receive
N windows

Clock
Dri Slave catches N windows

and re-synchronizes

Slave awakens
within TSync

Time

Tp_Master Tp_Master Tp_Master

Tp_Slave
Slave ac vely

listening

Tp_Master

Slave ac vely listening Tp_Slave

TSync TSync TSync TSync TSync

Seq = 0 0 0 0 1 0 0 1 1 0 1 0 1 1 1 1

W1 W5

W2 W6

W3

W4

Fig. 5 The De Bruijn sequence Seq has a 16 bit length and a 4-bit
sliding window

Table 1 The list of all the 4-bit
windows of the De Bruijun
sequence Seq

W1 0000 W5 1001 W9 1010 W13 1111
W2 0001 W6 0011 W10 0101 W14 1110
W3 0010 W7 0110 W11 1011 W15 1100
W4 0100 W8 1101 W12 0111 W16 1000

Rx = 0 1 0 0 1 1 1

W4

W5

W6

Tx = 0 1 0 0 1 1 0

W4

W5

W6

W7

Fig. 6 The Tx sequence represents the sent sequence W4,W5,W6,W7
and Rx represents the received sequence with a 1-bit error that breaks
the window sequence order with W12 being received instead of W7

226 Annals of Telecommunications (2022) 77:221–236

1 3

a recap, the following variable names have already been
encountered:

• Tp_Master: The periodic time the master waits to send the
synchronization sequence.

• Tp_Slave: The periodic time at which the slave wakes up
to detect the synchronization sequence.

• TSync: The time required to send the synchronization
sequence.

The serial communication scheme dictates the presence
of a start and an end bit for every UART packet of data
being sent. Thus, the total sequence time is calculated as
follows:

• Original sequence length is denoted by LSeq bits.
• Length after Manchester encoding = 2*LSeq bits
• Length of UART packet is symbolized as Lpkt bits.
• Number of UART packets being transmitted = (2*Lseq)/

Lpkt packets.
• Length with the start and end bits = (2*Lseq)/Lpkt packets

of (1 + Lpkt + 1) bits
• Time to send 1 bit is indicated by Tbit.
• Time to send 1 packet = (2 + Lpkt)*Tbit
• Total sequence length, TSync = (2*Lseq)/Lpkt *

(2 + Lpkt)*Tbit
• Number of UART packets read during state Receive N

Windows, is denoted by M.
• Size of window Wi is represented by Lwnd.

Accordingly, every Tp_Slave the receiver will wake up and
read M UART packets (M*Lpkt hardware bits), which repre-
sent M*Lpkt/2 De Bruijn bits or N sliding windows of Lwnd
bits each. Recall that each received window has a unique
position within the whole De Bruijn sequence. As such, the
slave makes sure these windows are ordered in a way con-
sistent with the proposed protocol. It then proceeds to cal-
culate the exact time. The following are used by the receiver
to determine the current time.

• The elapsed time since the last synchronization cycle is
denoted by Δt.

• (Tp_Slave—TSync) represents the time from the end of the
previous cycle (Seq has just been sent) till the beginning
of the current De Bruijn sequence (new Seq just com-
menced).

• Pi is the position of the last read UART packet in the
current sequence with respect to the beginning of the
sequence.

• Pi *(2 + Lpkt)*Tbit represents the elapsed time since the
beginning of the current Seq.

• Pi-1 is the position of the last read UART packet in the
previous synchronization sequence.

• (Pi-1*(2 + Lpkt)*Tbit—TSync) is the time between the syn-
chronization point in the last sequence till the end of the
previous Tp_Slave. This subtraction calculates the elapsed
time since the last synchronization cycle.

Based on the above,

Δt is then added to the previous time stamp to calculate
the exact time of reception of the latest synchronization
packet; Δt = ti – ti-1 where ti is the time of reception of the
last packet within the sequence in cycle i.

For Illustration purposes, consider M = 2 packets and
Lpkt = 8 bits, then the number of Manchester encoded bits
of the 2 UART packets = 2*Lpkt = 16 bits. Figure 7 provides
an illustration of the Manchester encoded sequence Seq that
is transmitted by the master. The receiver wakes up and
receives the first two packets that are highlighted in gray in
Fig. 7. Decoding the two received packets recreates the first
portion of Seq as depicted in Fig. 8.

The number of decoded De Bruijn bits of the 2 decoded
packets = 16/2 = 8 bits. Considering a De Bruijn window size
of 4 bits, the 8 received decoded bits in Fig. 8 include N = 5
windows, namely, W1, W2, W3, W4, and W5, refer to Section
III.B. Figure 9 provides an illustration of two cycles of syn-
chronization. During the current cycle, the slave receives
two packets and ti marks the time stamp of the reception of
the last packet. On the other hand, ti-1 marks the time of the
last packet received in the previous cycle. Clock correction
is carried out as

From Fig. 9, Pi = 1, Pi-1 = 2 and Δt is thus Tp_Slave + (1—
2)*(10)*Tbit = Tp_Slave- 10*Tbit. As a conclusion, the clock
is corrected as ti = ti-1 + Δt = ti-1 + Tp_Slave—10*Tbit. A more
comprehensive case study is provided in Section IV that
covers all the experimental details of the presented hardware
implementation.

Δt =
(

Tp_Slave − TSync
)

+ P∗

i

(

2 + Lpkt
)∗
Tbit −

(

P∗

i−1

(

2 + Lpkt
)∗

Tbit − TSync
)

Δt = Tp_Slave + P∗

i

(

2 + Lpkt
)∗
Tbit − Pi−1 ∗

(

2 + Lpkt
)∗
Tbit

Δt = Tp_Slave +
(

Pi − Pi−1

)∗(

2 + Lpkt
)∗
Tbit

ti = ti−1 + Δt, whereΔt = Tp_Slave +
(

Pi − Pi−1

)∗(

2 + Lpkt
)∗
Tbit

Manchester of Seq: 01010101100101101001100110101010

2*LSeq

0101010110010110

Lpkt Lpkt

0

2 packets

Fig. 7 Manchester encoded Seq that is transmitted by the master

227Annals of Telecommunications (2022) 77:221–236

1 3

4 Experimental evaluation

An experimental case study was developed to showcase
the feasibility of the proposed system. The details of the
experimental setup and the achieved results are presented
below.

4.1 System hardware prototype

To implement the master side of the system, a process-
ing device is connected to an off-the-shelf single channel
speaker as depicted in Fig. 10 and implements a sliding
window of 8 bits each as shown in Fig. 11. Figure 10 also
shows shows the slave side of the proposed system, which

includes a microphone, a conditioning circuit, and a pro-
cessor, as also shown in more details in Fig. 12. The basic
speaker-microphone system was tested using a square wave
from a function generator and its performance evaluated at
different distances and frequencies. As seen in Fig. 12, a
very basic electret condenser microphone was used with-
out the need for a high-quality microphone thus lowering
the cost of the system. The output of this circuit was then
decoupled, amplified, and clipped to extract the original
square wave from the received signal and the result is dis-
played in Fig. 13. It is important to highlight that the upper
square wave represents the input to the speaker and that is
faithfully recreated at the receiver side as the lower wave
form suggests.

Note that the processor used at both the transmitting and
receiving sides was the PIC 18F4550 since modest process-
ing power, minimal memory size, and a UART are needed.

4.2 Experimental setup

Figure 10 shows the placement of the speaker and micro-
phone. The experiment was carried out in a noisy lab envi-
ronment with 10 desktop computers running, a ventila-
tion system, and all the equipment depicted in Fig. 10. In
doing this, the setup is closer to a real scenario as opposed

Seq: 0000100110101111000010011

Fig. 8 Receiver decodes the received 2 packets to recreate the first portion of Seq

Fig. 9 An illustration of the
synchronization mechanism
with all the relevant variables

Time

1001 10100000 1111

ti-1

1001 10100000 1111

tiΔt
Lwnd

Pi-1 PiTp_Slave Tp_Slave

TSync

Fig. 10 Top view of the
experimental setup showing
the processing board of the two
processors “PIC Board,” the
“Signal Conditioning Circuit”
and the “Speaker” emitting the
synchronization sequence

Microphone

Enclosure

Signal conditioning

circuit

Speaker

PIC

Board

Fig. 11 12 bits generate 5 slid-
ing windows of 8 bits each

000010011010
12 bits

8 bits

228 Annals of Telecommunications (2022) 77:221–236

1 3

to running the experiment in a studio with minimum noise
levels.

To study the effect of reflections, five different setups
of the microphone were used. The first setup is simply
the microphone by itself (referred to as Standalone), the
second utilizes acoustic insulation foam behind the micro-
phone (referred to as One Insulation Edge OIE and shown
in Fig. 14), the third uses more insulation edges to cover
five sides of the microphone (referred to as Five Insu-
lation Edges FIE, Fig. 15), the fourth places a metallic
plate behind the microphone (Metal Plate MP, Fig. 16),
while the fifth combines the metallic plate with a four-
sided boundary of the acoustic insulation (Metal Plate with
Four Insulation Edges MPFIE, Fig. 17). Note that the MP
and MPFIE were inspired by the boundary effect micro-
phone [37]. To further understand the effect of reflections,
the metal plates were replaced with an insulation edge

Fig. 12 The signal conditioning
circuit

Fig. 13 Receiver performance
at bit duration 0.52 ms

Microphone

Insulation

Fig. 14 The microphone in the One Insulation Edge (OIE) configura-
tion

229Annals of Telecommunications (2022) 77:221–236

1 3

to create the OIE and FIE setups from the MP and the
MPFIE setups respectively. The experimental configura-
tion detailed below was used with these five microphone
setups and the obtained results are compared and discussed
in following section.

By experimentation, the used speaker-microphone con-
figuration exhibited acceptable performance at bit dura-
tions ranging from 0.2 to 1 ms, with the best performance
being observed at a bit duration of 0.52 ms. Thus, the PIC
was programmed to send serial data with a bit duration

as close as possible to 0.52 ms as dictated by the utilized
crystal and PIC, specifically 0.520833 ms. It is worth
noting that the 0-logic level was sent as − 2.5 V and the
1-logic level as 2.5 V to the speaker. The following lists
the various configurations of the experiment:

• Tp_Master: 60 s
• Tp_Slave: 60 s
• Original sequence length, LSeq bits = 256.
• Length after Manchester encoding = 2*LSeq bits = 512

bits.
• Length of UART packet, Lpkt bits = 8 bits.
• Number of UART packets being transmitted = (2*Lseq)/

Lpkt = 64 packets.
• Length with the start and end bits = (2*Lseq)/Lpkt pack-

ets of (1 + Lpkt + 1) = 10 bits.
• Time to send 1 bit, Tbit = 0.520833 ms.
• Time to send 1 packet = (2 + Lpkt)*Tbit = 5.20833 ms.
• Total sequence length, TSync = (2*Lseq)/Lpkt *

(2 + Lpkt)*Tbit = 333.333 ms.
• Number of UART packets, M = 3.
• Size of sliding De Bruijn window, Lwnd = 8.

Every Tp_Slave, the receiver will wake up and read 3
UART bytes (24 hardware bits), representing 12 De Bruijn
bits. Since Lwnd = 8, this maps to N = 5 sliding windows as
depicted in Fig. 11.

Recall that each received window has a unique position
within the whole De Bruijn sequence. As such, the slave
makes sure these windows are ordered in a way consist-
ent with the proposed protocol. It then proceeds to calcu-
late the exact time. The following equation is used by the
receiver to determine the current time, where Δt is added

Microphone

Insulation

Fig. 15 The microphone in the Five Insulation Edges (FIE) configu-
ration

Microphone

Metal Plate

Fig. 16 The microphone in the Metal Plate (MP) configuration

MicrophoneInsulation

Metal Plate

Fig. 17 The microphone in the Metal Plate with Four Insulation
Edges (MPFIE)

230 Annals of Telecommunications (2022) 77:221–236

1 3

to the previous time stamp to calculate the exact time of
reception of the latest synchronization packet.

The transmission delay is about 2.91 ms per meter of air
at 20 °C. Calculating the exact delay depends on the distance
between the speaker and microphone. A simple protocol
similar to the ones described in [16] and [17] can be utilized
at the initialization of the system so that each receiver will
know its exact location relative to the speaker and calculate
the delay needed for the signal to reach it accordingly.

4.3 Accuracy and performance

To test the performance of the system, a set of 512 packets
that carry the De Bruijn sequence is transmitted through
the speakers at varying offsets of 10 cm from the receiver
circuit. The 512 packets are sent over five trials, one for each
microphone setup, and the results are presented in Fig. 18,
Table 2, and Fig. 19.

As presented earlier, the receiver should wake-up and
attempt to receive 5 sliding widows (N = 5) which map to
3 UART packets (M = 3). By checking the bit patterns in
the received windows with the De Bruijn sequence, the
receiver can deduce if the received windows are correctly
following the sequence. The reception of three consecutive
correct UART packets provides the needed 5 sliding win-
dows and the receiver has all the information required to
re-synchronize. Thus, in the discussion to follow, the recep-
tion of 3 consecutive correct UART packets is referred to as
the reception of a correct sequence and this also represents
a resynchronization.

Figure 18 plots the number of correct sequences that are
received from the original 512 packets. The results of five

ti = ti−1 + Δt, where Δt = Tp_Slave +
(

Pi − Pi−1

)∗(

2 + Lpkt
)∗
Tbit

Δt = 60000ms +
(

Pi − Pi−1

)∗
5.20833ms

trials representing the different microphone setups are rep-
resented by the following labels: 1—Standalone, 2—OIE,
3—FIE, 4—MP, and 5—MPFIE. The setups are depicted in
(Fig. 14 to Fig. 17).

The plotted results in Fig. 18 prove that the Standalone
and FIE setups are the worst performers as they provided
the least amount of correct sequences at all distances. In
the results for distances that are at 80 cm and below, the
OIE setup provided the largest amount of received correct
sequences, while the metal plate helped in providing the
better results for distances of 90 cm and above. The best
performer in the 90 cm and above separation is the MPFIE
setup. It can be concluded that at the larger distances, the
reflections from the metal plate helped in reconstructing the
signal in a similar fashion to a boundary effect microphone,
while at smaller distances, the insulation helped in minimiz-
ing the effect of the destructive reflections.

A reception of a correct sequence implies resynchroniza-
tion. Thus, from the above presented experimental values,
it is obvious that there are resynchronization opportunities
at all the separation distances up to 250 cm which is the
limit of reliable reception of correct sequences. The issue to
tackle now is the mean time required for a receiver to wake
up and receive a correct sequence to be able to synchronize.
Especially when using the OIE setup for distances 80 cm
and below and the metal plate setups (MP or MPFIE) for
distances larger than that.

When a receiver wakes up to synchronize, it faces two
situations. Either there is a sequence being transmitted or
not. In case there are no sequences being transmitted, the
receiver needs to stay awake for a maximum of Tp_Master till
the next synchronization sequence arrives. If the receiver
awakes and the sequence is being transmitted, then some
packets have already been missed. The receiver has to wait
till it receives 3 correct UART packets (a correct sequence)
to be able to re-synchronize. For the five microphone setups,
512 UART packets have been sent and the received packets
were recorded on the receiver’s side. These recorded packets

Fig. 18 The number of received
correct sequences from the
set of 512 sent packets (510
total sequences). A correct
sequence is three consecu-
tive correct received UART
packets. The three packets are
needed to derive the location
of the bit pattern in the De
Bruijn sequence and thus lead
to resynchronization. Any data
point on the plot above signifies
a successful synchronization
instance

0

50

100

150

200

250

40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250

secneuqeStcerroCfo
#

Separa�on Distance (cm)

Number of Received Correct Sequences

Standalone OIE FIE MP MPFIE

231Annals of Telecommunications (2022) 77:221–236

1 3

provide a timeline of what the receiver would see when it
wakes up. Each packet reception initiated a counter as to
when a correct sequence would be received. That timing data
was gathered for all the reception slots that would receive a
correct sequence and the mean time to synchronize is pre-
sented in Table 2. It is to be noted that the slots of reception
that occur after the last correct sequence is received will

have to wait for Tp_Master before being able to synchronize.
The data points denoted by “No Sync.” in Table 2 highlight
some cases that would not be able to synchronize. There
are multiple cases for the Standalone, OIE, and FIE setups,
one case for the MP setup, and no such case for the MPFIE
setup. If we assume that a metal plate will be used (MP
and MPFIE) for distances 90 cm and above, and that an

Table 2 The mean time till successful re-synchronization at the dif-
ferent distances and for the five microphone setups. The “No Sync.”
entry denotes the cases in which re-synchronization was not success-

ful. For distances below 90 cm, the OIE setup was always successful
while the MP and MPFIE setups were always successful for distances
90 cm and above

Separa�on Mean Time Till Successful Synchroniza�on (ms)
Distance (cm) Standalone OIE FIE MP MPFIE

40 841.16157 536.18859 464.39976 15.62499 502.74019
50 No Sync. 109.09491 892.01641 26.78570 15.62499
60 31.24998 43.73767 521.18992 15.62499 331.83469
70 115.36506 29.35325 No Sync. 15.62499 376.66463
80 132.87482 64.94008 No Sync. 15.62499 475.58030
90 252.76060 461.93275 No Sync. 15.62499 92.51786

100 244.45049 125.94689 No Sync. 21.63460 52.36023
110 153.23238 161.06166 No Sync. 337.94653 44.41434
120 214.78580 432.42756 367.22501 73.10873 65.32968
130 299.23501 71.03014 263.60504 79.53981 39.79041
140 64.35181 94.34329 276.75480 46.61901 45.12853
150 430.28058 No Sync. No Sync. 86.66082 79.36552
160 416.86189 149.30159 39.06248 96.93634 35.03786
170 908.47816 361.68445 41.66664 111.04322 44.51687
180 No Sync. No Sync. No Sync. 90.24354 73.63826
190 No Sync. 401.16008 455.06013 121.32147 291.06602
200 No Sync. 677.08290 274.90975 255.83789 114.45999
210 589.11037 No Sync. No Sync. 15.62499 176.77555
220 No Sync. No Sync. No Sync. 589.00450 885.43155
230 No Sync. No Sync. No Sync. 145.25705 88.71659
240 No Sync. No Sync. No Sync. 101.97072 86.84810
250 No Sync. No Sync. No Sync. 244.45582 223.77742

Scheme successful
at all distances

Scheme successful
at all distances

Fig. 19 If the receiver wakes
up while the sequence is being
transmitted and still able to
receive a correct sequence, then
that is counted as a success-
ful synchronization. There are
512 packets being sent which
amount to 510 opportunities
to synchronize, the number
of successful opportunities is
presented in the chart

0
100
200
300
400
500
600

40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250

seitinutruppO.cnySlufsseccuSfo
#

Separa�on Distance (cm)

Number of Successful Synchroniza�on Opportuni�es Out Of 510 Windows

Standalone OIE FIE MP MPFIE

232 Annals of Telecommunications (2022) 77:221–236

1 3

insulating plane will be used (OIE) for distances lower than
90 cm, then the OIE, MP, and MPFIE setups will always
synchronize. Synchronization will occur in either the current
synchronization sequence or the one after. Figure 19 plots
the number of successful synchronizations within the 510
windows when the receiver wakes up while the sequence is
being transmitted. A receiver that wakes up at exactly the
time the sequence is being received has the chance to benefit
from all the presented opportunities. A receiver that wakes
in the middle of the transmission has a higher chance of
missing the successful receptions. In all aspects, the receiver
will be able to synchronize in either the current cycle or the
one next (the receiver will be actively awake when waiting
for the next cycle and thus can benefit from all the opportu-
nities). Given the right choice of the microphone setup, the
receiver will always synchronize up to a distance of 250 cm.

There are multiple aspects that can be utilized in the system
to further enhance these results and provide implementations
that can successfully increase the distance of separation sig-
nificantly beyond the 250 cm. These aspects would include
better components on the microphone and speaker side:
particularly speakers that can handle the abrupt nature of a
square wave. Another important aspect is the introduction
of bit error correction to the scheme. Error correction can
benefit from redundant data and/or the predictable nature of
the De Bruijn sequence data.

4.4 Indirect, non‑line of sight, and noisy
environment results

The results provided earlier focused on highlighting the
ability to synchronize with increasing separation distance
between the speaker and microphone under varying setups
while keeping a direct line of sight and having the speaker
and microphone squarely facing each other. This section pro-
vides data of three different experiments, the first has the
planes of the microphone and speaker at a 45 and 90 degrees
instead of being parallel, the second provides data with an
obstacle breaking the line of sight as shown in Fig. 20, and
the third runs the experiment while noisy generator units
are running.

4.4.1 Indirect experiment

The results of the experiment are presented in Table 3. It
can be seen that the number of correct sequences received is
diminished when compared with the original case presented
in the previous section. This decrease does not prevent

Microphone Speaker

Fig. 20 A cardboard obstacle placed in the middle of the path
between the speaker and microphone

Table 3 The results of the experiment with the planes of the microphone and speaker at an angle of 45 degrees and 90 degrees respectively. The
results prove that synchronization is still possible but with lower performance especially with the 90 degrees case

correct sequences Mean Time Till Successful Synchroniza�on (ms) # successful syncs out of 510 slots

Angle
(deg)

Distance
(cm) MPFIE FIE Stand

alone MP OIE MPFIE FIE Standalon
e MP OIE MPFIE FIE Stand

alone MP OIE

45

100 123 2 14 4 0 49.08 15.62 325.40 15.62 No Sync. 512 2 378 4 0

150 59 4 0 20 7 74.56 467.58 No Sync. 407.17 413.06 489 512 0 333 273

200 22 0 15 19 0 243.59 No Sync. 242.41 250.37 No Sync. 400 0 458 448 0

250 20 0 0 51 0 138.53 No Sync. No Sync. 93.66 No Sync. 437 0 0 488 0

300 6 0 0 7 0 277.79 No Sync. No Sync. 401.57 No Sync. 337 0 0 373 0

90

100 0 0 3 23 0 No Sync. No Sync. 689.08 176.92 No Sync. 0 0 498 474 0

150 4 0 0 48 1 293.24 No Sync. No Sync. 187.76 18.23 331 0 0 467 2

200 0 0 0 5 1 No Sync. No Sync. No Sync. 449.25 39.06 0 0 0 363 10

250 0 0 0 16 0 No Sync. No Sync. No Sync. 231.85 No Sync. 0 0 0 322 0

300 0 0 0 12 0 No Sync. No Sync. No Sync. 360.36 No Sync. 0 0 0 474 0

Scheme
successful at
all distances

Scheme
successful at
all distances

Scheme
successful at
all distances

233Annals of Telecommunications (2022) 77:221–236

1 3

synchronization especially with a metal plate. With both
the MP and MPFIE setups a significant number of correct
sequences is received and synchronization is successful for
all the considered distances with a 45 degrees angle (except
for the 50-cm case for MP). With the 90 degrees case, only
the MP setup was successful with synchronization at all the
distances. Table 3 also presents the mean time till successful
synchronization and the number of successful synchroniza-
tion out of the 510 slots.

4.4.2 Obstacle

To verify the operation of this synchronization mechanism
where a no direct line of sight is available, an obstacle was
placed between the speaker and microphone as depicted in
Fig. 20. The obstacle did diminish the number of correct
sequences received as reported in Table 4, but the circuit was
still successful in synchronizing between 150 and 300 cm
separation in the MP setup. As can be deduced from the
results, the insulation had a negative effect on the overall
performance in such a case.

4.4.3 Noisy environments

To study the effect of noisy environments on the perfor-
mance of the system, we conducted the experiment in an
electric power systems lab area that has significantly noisy
generator units using the MP configuration. Table 5 pro-
vides the number of received correct sequences with the
generator units on and off. The provided results clearly show
the detrimental effect of noise on the number of received
sequences as there is a large observed decrease in the num-
ber of sequences in the noisy case.

5 Concluding remarks

This work attempts to create a wireless synchronization
scheme for simple extant smart devices using sound. The
proposed scheme synchronizes multiple devices in one room

from one master in a broadcast fashion. One of the advan-
tages of this scheme is that synchronization is carried out
in an offline fashion with only the separation distance as a
restriction on the physical positioning of the devices. Moreo-
ver, the hardware requirement is a minimum. On one hand,
the master only needs access to a speaker and thus any PC
can initiate synchronization. On the other hand, the deployed
devices only need to have a UART, a microphone, and a
conditioning circuit (refer to Fig. 12).

Another aspect of this design is using serial communica-
tion instead of sampling with analog to digital converters.
The received signal is amplified and clipped using basic

Table 4 The results of the experiment with an obstacle in the path between the speaker and microphone that prevents a direct line of sight. The
results prove that synchronization is still possible but with lower performance.

correct sequences Mean Time Till Successful Synchroniza�on (ms) # successful syncs out of 510 slots

Ob
st

ac
le

Distance
(cm) MPFIE FIE Stand

alone MP OIE MPFIE FIE Standalone MP OIE MPFIE FIE Stand
alone MP OIE

150 0 0 0 12 0 No Sync. No Sync. No Sync. 207.27 No Sync. 0 0 0 347 0

200 2 0 0 12 1 445.63 No Sync. No Sync. 432.38 1346.35 319 0 0 512 512

250 3 0 0 6 0 432.21 No Sync. No Sync. 702.87 No Sync. 307 0 0 365 0

300 0 0 1 17 0 No Sync. No Sync. 54.69 441.42 No Sync. 0 0 16 476 0

Scheme
successful at
all distances

Scheme
successful at
all distances

Scheme
successful at
all distances

Table 5 The number of received correct sequences from the set of
512 sent packets (510 total sequences). A correct sequence is three
consecutive correct received UART packets. The three packets
are needed to derive the location of the bit pattern in the De Bruijn
sequence and thus lead to resynchronization. The noise from the gen-
erator units significantly decreased the number of these received cor-
rect sequences

Separation distance (cm) Number of received correct sequences
(MP)

Generators off Generators on

100 2 0
110 6 0
120 6 0
130 7 5
140 7 4
150 11 10
160 24 4
170 21 2
180 24 8
190 20 8
200 18 11
210 27 2
220 37 8
230 50 24
240 54 19
250 53 18

234 Annals of Telecommunications (2022) 77:221–236

1 3

circuit design and read as digital data by the processor as
seen in Fig. 12. Dropping the analog to digital sampling of
the signal allowed for relaxing the memory requirements. In
fact, the authors of [13] specified that in order to handle the
memory requirements of heavy sampling, their approach had
to rely on an online solution. Another advantage of dropping
the analog to digital sampling is that some processors do not
have built-in analog-to-digital converters and rely on exter-
nal samplers which might not be available in many devices.
However, most processors do have a UART or SCI port.
Finally, using a serial port is less computationally complex
than data sampling and the accompanying calculations.

Using a basic processor and a regular speaker also means
that a transmitter can be created on a personal computer
without the need for an independent device. The transmitter
code can be created as a simple script that can be easily run
on the computer. Once this script is activated, the data will
be transmitted using the preexisting computer speakers.

Overall, the presented system was able to reliably trans-
mit and receive the synchronization sequence over a distance
of 250 cm. If we consider the MPFIE setup, then the mean
synchronization time is 183.14 ms for the case when the
receiver wakes up during a synchronization sequence for all
separation distances or has an upper bound of approximately
Tp_Master for the case when the receiver wakes and is required
to wait till the next synchronization sequence. The system,
especially with the MP setup, was successful in synchroni-
zation when the planes of the microphone and speaker were
not parallel and also with an obstacle that blocks the line
of sight.

6 Future work

Two main areas are to be considered in enhancing the work
presented in this manuscript; the first is extending the range
of the system, and the second is working in insecure areas to
prevent among others a false sequence from being presented
to the system. The utilized constraints of cheap and simple
hardware such as the electret microphone with the condition-
ing circuit and utilizing a UART in handling the physical
layer communication had an adverse effect on the range of
the system. Relaxing these constraints by using more spe-
cialized speakers, microphones, and sound cards along with
utilizing bit error correction or modulation techniques could
help in increasing the distance over which reliable synchro-
nization sequence communication can be attained. To test
this assumption, we used Frequency Shift Keying to encode
a “0” as a 18 kHz sinusoid and a “1” as a 20 kHz sinusoid
in a similar fashion to what was presented in [38] which
also helped us in working with inaudible signals. We also
relaxed all the hardware constraints and utilized the micro-
phone and soundcard of a Thinkpad Carbon X1 to receive

the signal and demodulate it with a Matlab code. The bit
duration was extended dramatically from 0.52 to 100 ms.
This new setup helped in reliably receiving synchronization
sequences in ideal (line-of-sight, no obstacles, and no major
noise sources) outdoor and indoor environments with a 20-m
and 30-m separation respectively. We will build on this out-
come to gradually increase the hardware complexity from
what was presented in this manuscript and work towards
achieving the ideal balance between cost, speed, and range
in more demanding environments.

The other area for improvement is security. The method
presented in the manuscript broadcasts the synchronization
sequence openly where it is deployed. In case a potential
attacker gains physical access to the area, they can insti-
gate a man in the middle attack. Encryption of the sequence
between sender and receiver should help in mitigating some
of the security concerns of openly broadcasting the synchro-
nization sequence. Other techniques should also be studied
to prevent an attacker from simply recording the sequence
and transmitting it at varying intervals.

Acknowledgements The authors acknowledge the efforts of Aymane
El Baarini, Christelle Saliba, Rayan Al Sobbahi in conducting portions
of the lab experiments.

Funding This project has been jointly funded with the support of the
National Council for Scientific Research in Lebanon CNRS-L and the
Lebanese American University.

References

 1. Kim JY, Lee HY, Son JY and Park JH (2015) “Smart home web of
objects-based IoT management model and methods for home data
mining,” in 17th Asia-Pasific Network Operations and Manage-
ment Sumposium (APSNOMS)

 2. Li F, Yang Y, Chi Z, Zhao L, Yang Y, Luo J (2018) “Trinity: Ena-
bling self-sustaining WSNs indoors with energy-free sensing and
networking.” ACM Trans Embedded Comput Syst 17(2):Article
57

 3. Guo H, Crossly P (2017) Design of a time synchronization system
based on GPS and IEEE 1588 for trasnmission substations. IEEE
Trans Power Delivery 32(4):2091–2100

 4. IEEE Guide for Designing a Time Synchronization System for
Power Substations, IEEE Std 2030.101TM-2018

 5. IEEE Standard Profile for Use of IEEE 1588TM Preci-
sion Time Protocol in Power System Applications, IEEE Std
C37.238TM-2011

 6. Amelot J and Stenbakken G (2012) “Testing phasor measurement
units using ieee 1488 precision time protocol,” in Conference on
Precision Electromagnetic Measurements (CPEM) 2012

 7. Mills D (1991) Internet time synchronization: the network time
protocol. IEEE Trans Commun 39(10):1482–1493

 8. Helling D, Hense M, Van der Auweraer H and Leuridan J (2005)
“Data stream synchronization of distributed measurements sys-
tems using GPS technology,” in IEEE Intelligent Data Acquisition
and Advanced Computer Systems: Technology and Applications
IDAACS 2005

235Annals of Telecommunications (2022) 77:221–236

1 3

 9. Refan MH and Valizadeh H (2011) “Redundant GPS time syn-
chronization boards for computer networks,” in 19th Telecom-
munications Forum (TELFOR) Proceedings of Papers 2011

 10. Yan L (2012) “Application of GPS technology in frame-signal
synchronization system of wireless broadband access,” in 2nd
International Conference on Consumer Electronics, Communi-
cations and Networks (CECNet) 2012

 11. Li L, Xing G, Sun L, Huangfu W, Zhou R and Zhu H (2011)
“Exploiting FM radio data system for adaptive clock calibration in
sensor networks,” in Proceedings of the 9th International Confer-
ence on Mobile Systems, Applications, and Services

 12. IEEE Std802.15.4TM-2015, IEEE Standart for Low-Rate Wireless
Personal Area Networks (WPANs)

 13. Guo X, Mohammad M, Saha S, Chan CM, Gilbert S and Leong
D (2016) “PSync: visible light-based time synchronization for
Internet of Things (IoT),” in IEEE INFOCOM The 35st Annual
IEEE International Conference on Computer Communications

 14. Yang Q, An D and Yu W (2013) “On time desynchronization
attack against ieee 1558 protocol in power grid systems,” in IEEE
Energytech 2013

 15. Shijith N, Poornachandran P, Sujadevi VG and Dharmana MM
(2017) “Spoofing technique to counterfeit the gps receiver on a
drone,” in International Conference on Technological Advance-
ments in Power and Energy

 16. Bonebrake C, O’Neil LR (2014) Attacks on GPS time reliability.
IEEE Secur Priv 12(3):82–84

 17. Psiaki ML, Humphreys TE (2016) GNSS spoofing and detection.
Proc IEEE 104(6):1258–1270

 18. Humphreys TE, Ledvina BM, Psiaki ML, O’Hanlon BW and Kint-
ner Jr PM (2008) “Assessing the spoofing threat: development of
a portable GPS civilian spoofer,” in 21st International Technical
Meeting of the Satellite Division of the Institute of Navigation
(ION GNSS 2008)

 19. Aoki N, Ikeda K and Yasuda H (2020) “A synchronization tech-
nique using De Bruijn sequences for inaudible sound communica-
tion systems,” in International Conference on Emerging Technolo-
gies for Communications (ICETC 2020), online, December 2–3

 20. “Send data using sound,” Chirp, [Online]. Available: https:// www.
chirp. io

 21. Nguyen Q, Choi J (2016) Matching pursuit based robust acoustic
event classification for surveillance systems. Comput Electr Eng
57:43–54

 22. Qiao G, Bilal M, Liu S, Babar Z, Ma T (2018) Biologically
inspired covert underwater acoustic communication - a review.
Physical Communication 30:107–114

 23. Azad S, KhandakerTabin H, Nandi D, Pathan A-SK (2015) A
high-throughput routing metric for multi-hop underwater acoustic
networks. Comput Electrical Eng 44:24–33

 24. Morns IP, Hinton OR, Adams AE and Sharif BS (2001) “Protocol
for sub-sea communication networks,” in Proceedings of MTS/
IEEE Oceans Conference 2001. An Ocean Odyssey

 25. Hong F, Yang B, Zhang Y, Xu M, Feng Y and Guo Z (2014)
“Time synchronization for underwater sensor networks based on
multi-source beacon fusion,” in 20th IEEE International Confer-
ence on Parallel and Distributed Systems (ICPADS)

 26. De Bruijn N (1946) A combinatorial problem. Proceedings of
Nederlandse Akademie van Wetenschappen 49:758–764

 27. Mitchell CJ, Etzion T, Paterson KG (1996) A method for con-
structing decodable de Bruijn sequences. IEEE Trans Inform
Theory 42(5):1472–1478

 28. Margossian H, Sayed MA, Fawaz W, Nakad Z (2019) Partial grid
false data injection attacks against state estimation. Int J Electr
Power Energy Syst 110:623–629

 29. Spinsante S, Andrenacci S and Gambi E (2011) “Binary De Bruijn
sequences for DS-CDMA systems: analysis and results”. EURA-
SIP J Wireless Commun Netw 4

 30. Sacchi C (2019) “About the use of a new set of quadriphase
sequences for increasing security of PMR over LTE primary syn-
chronization,” in IEEE International Black Sea Conference on
Communications and Networking (BlackSeaCom), Sochi

 31. Chee YM, Etzion T, Kiah HM, Khu Vu V and Yaakobi E (2019)
“Constrained de Bruijn codes and their applications,” in IEEE
International Symposium on Information Theory (ISIT), Paris

 32. Howie RM, Paxman J, Bland PA, Towner MC, Sansom EK,
Devillepoix HAR (2017) Submillisecond fireball timing using de
Bruijn timecodes. Meteorit Planet Sci 52(8):1669–1682

 33. Forster R (2000) “Manchester encoding: opposing definitions
resolved”. Eng Sci Educ J 278–280

 34. Jose J (2013) “Design of Manchester II bi-phase encoder for MIL-
STD-1553 protocol,” in International Multi-Conference on Auto-
mation, Computing, Communication, Control and Compressed
Sensing (iMacs4) 2013

 35. “Manchester Encoding Basics,” [Online]. Available: http:// ww1.
micro chip. com/ downl oads/ en/ AppNo tes/ Atmel- 9164- Manch ester-
Coding- Basics_ Appli cation- Note. pdf. Accessed 17 Aug 2021

 36. Tao Q, Zhong C, Lin H and Zhang Z (2018) “Symbol detection
of ambient backscatter systems with manchester coding”. IEEE
Trans Wireless Commun 17(6)

 37. Capel V (2016) Newness audio and Hi-Fi, engineer's pocket book.
Elsevier

 38. Guri M, Solewicz Y and Elovici Y (2018) “MOSQUITO: covert
ultrasonic transmission between two air-gapped computers using
speaker-to-speaker communication,” in Proceedings of the 2018
IEEE Conference on Dependable and Secure Computing (DSC),
Kaohsiung, Taiwan (ROC)

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

236 Annals of Telecommunications (2022) 77:221–236

https://www.chirp.io
https://www.chirp.io
http://ww1.microchip.com/downloads/en/AppNotes/Atmel-9164-Manchester-Coding-Basics_Application-Note.pdf
http://ww1.microchip.com/downloads/en/AppNotes/Atmel-9164-Manchester-Coding-Basics_Application-Note.pdf
http://ww1.microchip.com/downloads/en/AppNotes/Atmel-9164-Manchester-Coding-Basics_Application-Note.pdf

	A novel offline indoor acoustic synchronization protocol: experimental analysis
	Abstract
	1 Introduction
	2 Background
	3 System design
	3.1 Proposed protocol
	3.2 Synchronization sequence and encoding scheme
	3.3 Synchronization

	4 Experimental evaluation
	4.1 System hardware prototype
	4.2 Experimental setup
	4.3 Accuracy and performance
	4.4 Indirect, non-line of sight, and noisy environment results
	4.4.1 Indirect experiment
	4.4.2 Obstacle
	4.4.3 Noisy environments

	5 Concluding remarks
	6 Future work
	Acknowledgements
	References

