
Computer Networks 209 (2022) 108900

A
1

Contents lists available at ScienceDirect

Computer Networks

journal homepage: www.elsevier.com/locate/comnet

Joint computing, communication and cost-aware task offloading in
D2D-enabled Het-MEC
Nadine Abbas a,∗, Sanaa Sharafeddine a, Azzam Mourad a,b, Chadi Abou-Rjeily c, Wissam Fawaz c

a Department of Computer Science and Mathematics, Lebanese American University, Beirut, Lebanon
b Division of Science, New York University, Abu Dhabi, United Arab Emirates
c Department of Electrical and Computer Engineering, Lebanese American University, Byblos, Lebanon

A R T I C L E I N F O

Keywords:
Mobile edge computing
Cloud computing
Partial offloading
Computation resource allocation
Radio resource allocation
D2D communication
Multi-RAT

A B S T R A C T

Due to the exploding traffic demands and the diversity of novel applications requiring extensive computation
and radio resources, research has been active to devise mechanisms for responding to these challenges. Mobile
edge computing (MEC) and device-to-device (D2D) computation task offloading are expected to play a major
role in serving devices with limited capabilities, and thus enhance system performance. In this work, we
propose a joint computing, communication and cost-aware task offloading optimization problem aiming at
maximizing the number of completed tasks, while minimizing energy consumption and monetary cost in D2D-
enabled heterogeneous MEC networks. Our proposed scheme allows partial offloading where a requester mobile
terminal offloads different parts of its data task simultaneously to multiple peer mobile terminals (MTs), edge
servers and cloud. We formulate and solve the optimal allocation strategy then decompose the problem into
two sub-problems in an attempt to reduce its complexity. Furthermore, we propose a low-complexity algorithm
that generates high performance results and can be applied for large-scale networks. Compared to conventional
and state-of-the-art system models, results show the effectiveness of the proposed schemes and provide useful
insights into the tradeoffs between the number of completed tasks, energy consumption and monetary cost.
1. Introduction

As technology is advancing, applications are becoming so diverse
and demanding as many global trends have arisen. Applications, such
as video surveillance, feature and facial recognition, healthcare moni-
toring, automatic driving, in addition to virtual and augmented reality,
are expected to increase 12-fold between 2017 and 2022 [1]. These
novel applications require extensive computation and radio resources,
which may exceed the computing capabilities of the devices and thus
creating the need for efficient computation offloading and faster means
of communication. In support of this direction, the future wireless
networks are expected to provide the ability to accommodate massive
connections and high loads with ultra-fast speeds [2].

Mobile edge computing is considered as a key design of the fu-
ture wireless networks providing cloud computing capabilities such as
heavy computation tasks offloading at mobile edge network devices
or servers, which are located in close proximity to battery-powered
user equipment for ultra-reliable and low-latency services [3,4]. The
area of mobile edge computing has been gaining a lot of attention
in the literature recently [5,6]. D2D communication was integrated
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with MEC to further enhance system performance in terms of capacity,
energy consumption and delay [7,8]. The authors in [9,10] considered
binary offloading where a task can be executed locally or remotely.
The authors in [11–14] adopted partial offloading where a task can
be partitioned into different sub-tasks to be executed simultaneously
locally and remotely. Partial offloading proved to be efficient and
suitable for low-latency and data partitioned oriented applications,
such as virus scan, file/figure compression, recognition, and vision
applications [8,11]. In such applications, the input data is bit-wise
independent and can be arbitrarily partitioned for parallel processing.

In general, previous works considered D2D offloading while limiting
the connection to one device and the number of chunks to maximum
three [12,13]. Moreover, previous studies focused mainly on one or
two objective functions including reducing latency in [7,11,15,16], en-
ergy consumption in [8,17], increasing the number of completed tasks
in [12,13] with delay and energy constraints, minimizing monetary
cost while reducing energy consumption [18] or latency in [19,20],
and providing a trade-off between energy and latency in [14]. How-
ever, these objectives are interdependent, hence, a trade-off between
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multiple objectives should be considered to enhance task offloading
performance. In summary, existing research work on resource man-
agement in D2D-enabled heterogeneous MEC (Het-MEC) networks is
still limited in terms of scalability and performance. Considering partial
offloading to multiple MTs, edge servers and cloud, simultaneously,
becomes a must to provide substantial gains for tasks offloading. Lastly,
fast and high performance solutions should be provided in real-time
dense D2D-enabled Het-MEC.

Complementing the existing literature, we address joint comput-
ing, communication and cost-aware task offloading multi-objective op-
timization problem. We present a comprehensive multi-layer D2D-
enabled heterogeneous MEC network where a network operator takes
advantage of all the available computation and communication re-
sources to serve the maximum number of tasks within their deadline
while minimizing its operational cost. The main contributions of this
work can be summarized as follows:

1. The adoption of multi-layer D2D-enabled Het-MEC networks
where multiple edge servers, cloud, and peer mobile terminals
cooperate to enhance system performance. We allow partial
offloading where the computation task data is bit-wise indepen-
dent and can be divided into multiple subtasks to be simultane-
ously executed locally and remotely over multiple nodes.

2. The adoption of heterogeneous networks (Het-Nets) and D2D
communication where the requester mobile terminal (MTR)
communicates simultaneously over multiple wireless technolo-
gies. MTR can then offload data to multiple peer MTs using short
range wireless technologies such as Bluetooth, to multiple edge
servers through access points (APs) using WiFi and to the cloud
through the base stations (BSs) over long range technologies
such as cellular technologies.

3. The development of a framework achieving optimized joint of-
floading decision, radio and computation resource allocation
aiming at completing the maximum number of computation
tasks while simultaneously reducing the mobile terminals energy
consumption and the operational monetary cost of the network
operator including incentives paid for the peer mobile terminals
to contribute their resources, as well as, the cost of the edge and
cloud services.

4. Problem decomposition into two optimization sub-problems and
proposing a hierarchical offloading approach to reduce the com-
plexity of solving the formulated optimization problem. We first
solve the optimal allocation while maximizing the number of
completed tasks which determines the MTRs served. We then
provide optimized solutions for serving the determined MTRs
with minimum energy consumption and monetary cost. Solving
these sub-problems consecutively reduces the number of MTRs
to the number of served MTRs, which has large impact on the
number of decision variables and system constraints. However,
it may not have high impact on reducing the execution time in
scenarios where all MTRs can be served.

5. The development of low-complexity algorithm allowing for real-
time iterative task offloading providing fast sub-optimal solu-
tions in large-scale Het-MEC networks. The proposed iterative
approach is scalable and can operate under real-time conditions
while considering dynamic system parameters.

This paper is organized as follows. Existing studies are surveyed in
ection 2. The system model is presented in Section 3. The optimization
llocation problem is detailed in Section 4. The proposed hierarchical
nd iterative approaches are presented in Sections 5 and 6, respectively.
erformance results are discussed in Section 7. Finally, conclusions are
2

rawn in Section 8.
2. Related work

Recently, computation offloading to edge servers and cloud has
become a hotspot in research [5,6]. Many work addressed binary
offloading [15,21–24] and partial offloading [16,17,25,26] in MEC
networks. The authors in [15] aimed at jointly optimizing the task
offloading, the users’ and servers’ transmit power, communication and
computation resource allocation for multi-user non-orthogonal multiple
access (NOMA)-based multi-access MEC systems while minimizing the
overall users’ tasks delay. In [16], the authors addressed cellular-
assisted MEC with NOMA aiming at jointly optimizing the edge users’
computation offloading, the offloading duration, and the edge server
computation resource allocation while minimizing the overall tasks
completion latency. The authors in [17] jointly optimize computation
offloading, data compression and resource allocation in a multi-user
MEC system aiming at minimizing the energy consumption subject to
latency and computation capacity constraints.

As the delay-sensitive applications are becoming more diverse, D2D
communication was integrated with MEC to further enhance system
performance. In this section we survey the open literature considering
D2D cooperation for computation task offloading. The work in [7,8]
considered D2D cooperation to create a cloud environment and of-
fload tasks to peer MTs, without the use of edge servers and cloud.
The authors in [8] addressed partial D2D computation offloading to
nearby cooperating devices while minimizing energy consumption and
execution time.

In the following studies, D2D offloading was adopted with MEC
and mobile cloud computing (MCC) offloading to achieve performance
gains in terms of capacity, energy consumption, latency and mone-
tary cost. The authors in [9,10] considered binary offloading in D2D-
enabled MEC systems. The authors in [11–14] adopted partial offload-
ing in D2D-enabled Het-MEC systems. The authors in [11] addressed
resource allocation and interference management aiming at minimizing
the task execution latency subject to energy and delay constraints.
They adopted partial offloading, where a task can be divided into
two parts. One part is processed locally, and the rest is offloaded for
remote execution on the device or a smart base station. The authors
in [12,13] adopted partial offloading where a user’s task is partitioned
intro three parts to be executed locally, at one edge server, and at one
peer MT, simultaneously. They addressed task offloading, computation
resource and power allocation, aiming at maximizing the number of
supported devices while meeting delay and power constraints. In [14],
the authors addressed the joint selection of computation modes, com-
putation resources and bandwidth allocation while minimizing latency
and energy consumption. The scheme in [14] allowed the tasks to
be executed simultaneously locally, offloaded to one MEC, or to one
peer device. Accordingly, they adopted 3 computation modes: local
execution, complete or partial D2D offloading with local execution, and
complete or partial MEC offloading with local execution. Price-aware
offloading strategies were proposed while considering binary offloading
in [19] and partial offloading in [18,20] in Het-MEC networks without
D2D cooperation.

The system models considered in the existing D2D-enabled Het-
MEC are still limited. They mainly used binary offloading while some
used partial offloading with very limited number of cooperating nodes.
Moreover, previous studies focused mainly on one or two objective
functions ignoring the need to provide a trade-off between these objec-
tives. In our work, we propose a comprehensive D2D-enabled Het-MEC
system model that addresses the joint problem of (1) partial offloading
of computation tasks to multiple nodes (MTs, MECs, and cloud), (2)
computation resource allocation reserved by a MT, MEC or cloud to ex-
ecute the offloaded portion of the task, and (3) radio resource allocation
where we allocate channels over Bluetooth, WiFi and cellular networks
for D2D, MEC and MCC offloading, respectively. We formulate the
problem as a multi-objective optimization problem and present low-
complexity sub-optimal approaches achieving close-to-optimal results
in scenarios with limited number of devices, which are then applied

for large-scale Het-MEC networks.
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Fig. 1. Heterogeneous MEC network composed of mobile terminals, edge servers and
cloud.

3. System model

In our work, we address D2D-enabled Het-MEC network where a
network operator offers computation services to its subscriber MTRs
having computation tasks to be executed. As shown in the sample
scenario depicted in Fig. 1, a Het-MEC network is composed of mul-
tiple nodes having different computation capabilities, ranging from
MTs to highly powerful cloud-computing servers. We address modern
devices equipped with multiple wireless interfaces and take advantage
of the heterogeneous networks for parallel computation offloading. A
requester MTR can then offload to multiple MTs using short range (SR)
wireless technologies (such as LTE-Direct, WiFi-Direct, or Bluetooth),
multiple edge servers and cloud through the APs and the BSs over long
range (LR) technologies (such as WiFi, LTE, or 5G). We assume our
network operator is subscribed with cloud services to support its own
computational services, deploys edge servers accessible through WiFi
APs, and pays the peer MTs incentives to share their resources over
SR connectivity. The mobile terminals are subscribed for the computa-
tion service offered by the network operator and provide the needed
information over control channels. MTs may choose to contribute their
computational resources for a monetary incentive. We assume a cellular
BS is equipped with a controller server that handles the offloading
decisions, computation and communication resource allocation. The
network controller can then make computation offloading decisions
and broadcast them to the mobile terminals over a control channel.
Our problem aims at maximizing the benefits of the network operator
to serve the maximum number of subscribers while minimizing its
operational expenses (OPEX). The operational expenses of the network
operator addressed in this paper include the usage fees of the cloud,
edge and incentives. To do so, the operator encourages more cost
effective task offloading through utilizing MEC and D2D offloading
whenever feasible. In addition, the operational cost includes the in-
centives paid for the peer MTs to contribute their resources. Aiming
at improving the quality of experience of its subscribers, it is of the
network operator’s interest to minimize the energy consumption of
using this service whether being a requester or a peer mobile terminal.

3.1. Basic parameters

Our network is composed of 𝑁 MEC servers/APs, a single MCC/BS,
in addition to 𝐾 mobile terminals out of which 𝐴 are requester ter-
minals and 𝐽 are cooperating terminals. A MTR 𝑖 has a computation
task 𝑈𝑖 described by (𝐷𝑖, 𝐹𝑖, 𝑇 𝑚𝑎𝑥𝑖 ), where 𝐷𝑖 (in bits) represents the
amount of computation data required to accomplish task 𝑈𝑖, 𝐹𝑖 (in
cycles/bit) represents the number of CPU cycles required for computing

𝑚𝑎𝑥
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1-bit of data, and 𝑇𝑖 denotes the maximum delay tolerance for task
𝑈𝑖. The computation capabilities at MTR 𝑖 may be limited and task 𝑈𝑖
may not be executed locally within 𝑇 𝑚𝑎𝑥𝑖 , therefore, we adopt partial
offloading, where each device can split its task into multiple parts for
local and remote execution. The computation data task is then divided
and assigned to be executed by the cooperating nodes including peer
MTs, MEC servers and cloud having different computation capabilities.
Let 𝐹 𝑙𝑖 (in Hz) denotes the computation resources of a requester MTR 𝑖,
𝐹 𝑑𝑗 , 𝐹 𝑒𝑛 and 𝐹 𝑐 the computation resources of a peer MT 𝑗, edge server
MEC 𝑛 and MCC, respectively. Accordingly, every cooperating node
will allocate part of its computation resources to execute a chunk of
the computation task 𝑈𝑖. Moreover, our system model is extended to
accommodate for real-time scenarios with MTRs generating multiple
tasks with a level of activity 𝜆A. Accordingly, at every time slot of
duration 𝑇s, the offloading decisions can be performed while consid-
ering the dynamic system variations. The main system parameters are
summarized in Table 1.

3.2. Decision variables

As illustrated in Fig. 1, we decide on the amount of data to be
executed locally and offloaded to every cooperating node, as well as the
radio and computation resource allocated for every MTR. For offloading
decisions, the main decision variables (see Table 1) are presented as
follows: 𝑋𝑖 the size of computation data executed locally at MTR 𝑖, 𝑌𝑖,𝑗 ,
𝑍𝑖,𝑛 and 𝑊𝑖 the size of data offloaded from MTR 𝑖 to MT 𝑗, MEC 𝑛 and
MCC, respectively. Accordingly, the total size of data processed can be
represented by 𝐺𝑖 as follows:

𝐺𝑖 = 𝑋𝑖 +
𝐽
∑

𝑗=1
𝑌𝑖,𝑗 +

𝑁
∑

𝑛=1
𝑍𝑖,𝑛 +𝑊𝑖 (1)

For computation resource allocation, the solution of the problem
decides on 𝜇𝑑𝑖,𝑗 , 𝜇

𝑒
𝑖,𝑛 and 𝜇𝑐𝑖 representing the fraction of computation ca-

pacity allocated by MT 𝑗, MEC 𝑛 and MCC to execute task 𝑈𝑖 generated
by MTR 𝑖, respectively.

For communication resource allocation, we allocate radio channels
for D2D, MEC and MCC offloading. We denote by 𝐿𝑑𝑖,𝑗 a binary vari-
able indicating whether a connection is established and a channel is
allocated for computation task offloading from MTR 𝑖 to peer MT 𝑗. A
channel 𝐿𝑑𝑖,𝑗 is only set to 1 when MTR 𝑖 is offloading data to peer MT 𝑗
and is located within its coverage range. We denote by 𝑣𝑑𝑖,𝑗 an input
binary variables indicating whether MTR 𝑖 is within MT 𝑗 coverage.
Similarly, we denote by 𝐿𝑒𝑖,𝑛 and 𝐿𝑐𝑖 binary variables indicating whether
a channel is allocated for computation offloading from MTR 𝑖 to MEC 𝑛,
and MCC, respectively. We denote by 𝑣𝑒𝑖,𝑛 an input binary variables
indicating whether MTR 𝑖 is within MEC 𝑛 coverage range. Moreover,
we assume multiple subchannels allocation for MCC computation of-
floading over the cellular network. We denote by 𝜂𝑐𝑖 the number of
subchannels allocated to MTR 𝑖 by the MCC.

We denote by 𝜋𝑖 a binary variable indicating whether task 𝑈𝑖
requested by MTR 𝑖 is fully executed within the time limit 𝑇 𝑚𝑎𝑥𝑖 .
Accordingly, 𝜋𝑖 is set to one when the data assigned 𝐺𝑖 is equal to the
data size 𝐷𝑖 of task 𝑈𝑖. Otherwise, if the task cannot be fully executed,
we do not allow data nor resources to be assigned for MTR 𝑖; that is,
when 𝜋𝑖 is set to zero, 𝑋𝑖, 𝑌𝑖,𝑗 , 𝑍𝑖,𝑛, 𝑊𝑖, the computation resources 𝜇𝑑𝑖,𝑗 ,
𝜇𝑒𝑖,𝑛 and 𝜇𝑐𝑖 , as well as the channel and radio resources 𝐿𝑑𝑖,𝑗 , 𝐿

𝑒
𝑖,𝑛 and 𝐿𝑐𝑖

are set to zero. Accordingly, the actual transmission rate, computation
and channel allocation are nonzero only if the task can be completed
and the data is offloaded to the corresponding node within its coverage
range.

Accordingly, the decision variables are: X, W, 𝜋, 𝜇𝑐 , 𝐿𝑐 , and 𝜂𝑐

vectors of size 𝐴, Y, 𝜇𝑑 , and 𝐿𝑑 matrices of size 𝐴 × 𝐽 , and Z, 𝜇𝑒, and
𝑒
𝐿 matrices of size 𝐴 ×𝑁 .
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Table 1
Main parameters and decision variables.

Parameters

𝐾 number of mobile terminals, where 𝐾 = 𝐴 + 𝐽

𝐴 number of mobile terminals requesting tasks, and a requester
is referred to as MTR 𝑖 where 𝑖 = 1,… , 𝐴

𝐽 number of peer mobile terminals, and a peer terminal is
referred to as MT 𝑗 where 𝑗 = 1,… , 𝐽

𝑁 number of MEC servers/APs, where a MEC server is referred
to as MEC 𝑛 where 𝑛 = 1,… , 𝑁

𝐷𝑖 size of computation resource (in bits) of task 𝑈𝑖 of MTR 𝑖

𝐹𝑖 number of CPU cycles required for computing 1-bit data of
𝑈𝑖

𝑇 𝑚𝑎𝑥𝑖 maximum delay tolerance (in seconds) for a task 𝑈𝑖
𝜁𝑑 maximum number of D2D connections allowed per MTR
𝜁 𝑒 maximum number of MEC connections allowed per MTR
𝜁 𝑐 maximum number of cellular subchannels allocated per MTR
𝛺𝑑 maximum number of MTRs served by a peer MT
𝛺𝑒 maximum number of MTRs served by a MEC
𝛺𝑐 maximum number of MTRs served by the MCC

Decision variables

𝑋𝑖 integer variable indicating the amount of computation tasks
executed locally at the requester MTR 𝑖

𝑌𝑖,𝑗 integer variable indicating the amount of computation tasks
offloaded from MTR 𝑖 to MT 𝑗

𝑍𝑖,𝑛 integer variable indicating the amount of computation tasks
offloaded from MTR 𝑖 to MEC 𝑛

𝑊𝑖 integer variable indicating the amount of computation tasks
offloaded from MTR 𝑖 to the MCC

𝜇𝑑𝑖,𝑗 real variable varying between 0 and 1, indicating the
fraction of computation resources allocated by MT 𝑗 to
execute MTR 𝑖 task

𝜇𝑒𝑖,𝑛 real variable varying between 0 and 1, indicating the
fraction of computation resources allocated by MEC 𝑛 to
execute MTR 𝑖 task

𝜇𝑐𝑖 real variable varying between 0 and 1, indicating the
fraction of computation resources allocated by MCC to
execute MTR 𝑖 task

𝜋𝑖 binary variable indicating if MTR 𝑖 is served; i.e., task 𝑈𝑖 is
fully executed within 𝑇 𝑚𝑎𝑥𝑖

𝐿𝑑𝑖,𝑗 binary variable indicating whether a channel is allocated for
computation task offloading from MTR 𝑖 to MT 𝑗

𝐿𝑒𝑖,𝑛 binary variable indicating whether a channel is allocated for
computation task offloading from MTR 𝑖 to MEC 𝑛

𝐿𝑐𝑖 binary variable indicating whether a channel is allocated for
computation task offloading from MTR 𝑖 to MCC

𝜂𝑐𝑖 integer variable indicating the number of cellular
subchannels allocated to MTR 𝑖 by the MCC BS

3.3. Communication models

In our work, we consider a heterogeneous network deployment
where the MTR can offload computation tasks to the cloud through
cellular network, to the edge servers through WiFi APs and to other
MTs through Bluetooth. As in any wireless system, dedicated channels
are used to exchange control information. The data size of the con-
trol messages is typically minimal leading to a negligible overhead.
Accordingly, we target transmission data rate and energy consumption
in our problem formulation which vary based on the channel conditions
and the different wireless technologies characteristics such as transmit
power, bandwidth and channel allocation presented below and in
Section 7.2. Following from Shannon’s channel capacity formulation,
the achievable data rate can be estimated as follows:

𝑅 = 𝐵 ⋅ log2

(

1 +
𝑝 ⋅ ℎ
𝜎2

)

(2)

here 𝐵, 𝑝, and 𝜎2 represent the channel bandwidth, the transmit
ower and the noise power, respectively. We assume the wireless
4

hannel to be dominated by line-of-sight component, where the channel
ain ℎ can be expressed as follows:

= 𝜅 ⋅
(

𝑑0
𝑑𝑖,𝑥

)𝛼
(3)

where 𝜅 is a pathloss constant, 𝛼 is the pathloss exponent, 𝑑0 is a
reference distance (typically 1 or 10 meters in indoor or short range
outdoor scenarios) while 𝑑𝑖,𝑥 is the distance between MTR 𝑖 and receiver
node 𝑥, which can be a MT 𝑗, MEC 𝑛, or MCC [27].

3.3.1. Bluetooth for D2D offloading
For D2D cooperation, we assume that each D2D pair is assigned

one orthogonal non-overlapping subchannel with bandwidth 𝐵𝑑 over
Bluetooth. For instance, Bluetooth Low Energy (BLE) 5.0 operates at
2.4 GHz and uses Frequency Hopping Spread Spectrum (FHSS) over 40
channels with 2 MHz channel spacing [28]. We assume offline network
discovery where MTRs can discover other devices in their vicinity
before the dynamic decisions are made. The MTR can then interconnect
with up to seven active slave MTs and up to 255 inactive or parked
peer slave MTs [29]. Accordingly, based on the dynamic computation
offloading decisions, transmission physical channels will be allocated
for computation offloading from the MTR to the active MTs. Following
the Bluetooth Standards, we assume the availability of 𝛺𝑑 orthogonal
channels for active peer MTs and MTRs. We also limit the number of
active D2D connections for a MTR 𝑖 to 𝜁𝑑 .

3.3.2. Wifi for MEC offloading
For MEC offloading, the MTR should be authenticated and asso-

ciated with the WiFi AP before starting the computation offloading.
The new generations of WiFi standards rely on request-to-send/clear-
to-send procedure to avoid collisions in the case of multi-user sce-
narios [30]. Following WiFi Standards, we adopt the 5 GHz IEEE
802.11n which uses Orthogonal Division Multiplexing and provides
three Unlicensed National Information Infrastructure (UNII) bands:
UNII-1, UNII-2 and UNII-3 having 4, 15 and 4 number of orthogonal
channels, respectively [31]. To limit the interference, we distribute the
orthogonal channels to the 𝑁 APs and assume the availability of 𝛺𝑒

orthogonal channels per MEC. We also limit the number of connected
MEC servers for a MTR 𝑖 to 𝜁𝑒. Every MTR is assigned one channel at
a time and thus no contention could occur in this case as the channel
is reserved for this MTR. The MTRs can then directly access and fully
use the channel allocated to them based on the computation offloading
and resource allocation decisions.

3.3.3. Cellular network for cloud offloading
We assume that a MTR can offload its computation data task to MCC

through cellular network. We adopt orthogonal frequency-division mul-
tiple access method for channel access. We further assume that the
available bandwidth resource of the BS is divided into equal-band
subchannels. Let 𝐵𝑐 and 𝛺𝑐 denote, respectively, the subchannel band-
width and the total number of subchannels of the BS. Each MTR 𝑖 is
then allocated a number of orthogonal subchannels 𝜂𝑐𝑖 . In our work,
we limit the number of subchannels allocated to a MTR 𝑖 by 𝜁 𝑐 .

3.4. Computing models

In our work, we adopt four computing models: (1) local comput-
ing, (2) D2D peer device computing, (3) edge computing, and (4)
cloud computing. The computation delay and energy consumption are

presented for every model as follows.
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3.4.1. Local computing
The computation delay 𝑇 𝑙𝑖 of processing 𝑋𝑖 data locally can be

omputed as follows:

𝑙
𝑖 =

𝑋𝑖 ⋅ 𝐹𝑖
𝐹 𝑙𝑖

(4)

The energy consumed by MTR 𝑖 to execute locally 𝑋𝑖 bits can be
expressed as follows:

𝐸𝑙𝑖 = C𝑙𝑖 ⋅𝑋𝑖 ⋅ (𝐹 𝑙𝑖 )
2 (5)

where C𝑙𝑖 is the local effective switched capacitance of MTR 𝑖, reflecting
the energy consumption coefficient related to its CPU performance [14,
21].

3.4.2. D2D device computing
The total delay 𝑇 𝑑𝑖,𝑗 of offloading 𝑌𝑖,𝑗 to MT 𝑗 includes computation

and transmission delay as follows:

𝑇 𝑑𝑖,𝑗 = 𝑇 𝑑𝑐𝑖,𝑗 + 𝑇 𝑑𝑡𝑖,𝑗 (6)

here 𝑇 𝑑𝑐𝑖,𝑗 is the computation delay of device MT 𝑗 to execute 𝑌𝑖,𝑗
equested by MTR 𝑖, and can be expressed as follows:

𝑑𝑐
𝑖,𝑗 =

𝑌𝑖,𝑗 ⋅ 𝐹𝑖
𝜇𝑑𝑖,𝑗 ⋅ 𝐹

𝑑
𝑗

(7)

𝑇 𝑑𝑡𝑖,𝑗 represents the communication delay for transmitting 𝑌𝑖,𝑗 bits from
MTR 𝑖 to MT 𝑗 can be expressed as follows:

𝑇 𝑑𝑡𝑖,𝑗 =
𝑌𝑖,𝑗
𝑅𝑑𝑖,𝑗

(8)

where 𝑅𝑑𝑖,𝑗 is the transmission rate of the D2D link. Note that the
computation output data is normally much smaller than that of the
input data. Accordingly, the downlink transmission time requires much
lower transmission latency, and hence can be neglected [12].

In case of D2D communications, the total energy 𝐸𝑑𝑖,𝑗 consumed
by MTR 𝑖 for offloading data to MT 𝑗 includes communication (data
transmission and reception), as well as, computation processing energy
consumption as follows:

𝐸𝑑𝑖,𝑗 = 𝐸𝑑𝑡𝑖,𝑗 + 𝐸
𝑑𝑟
𝑖,𝑗 + 𝐸

𝑑𝑐
𝑖,𝑗 (9)

𝐸𝑑𝑡𝑖,𝑗 represents the energy consumed by MTR 𝑖 to transmit 𝑌𝑖,𝑗 bits to
MT 𝑗, and can be expressed as follows:

𝐸𝑑𝑡𝑖,𝑗 = 𝑃 𝑑𝑡𝑖 ⋅ 𝑇 𝑑𝑡𝑖,𝑗 = 𝑃 𝑑𝑡𝑖 ⋅
𝑌𝑖,𝑗
𝑅𝑑𝑖,𝑗

(10)

here 𝑃 𝑑𝑡𝑖 is the power consumed by MTR 𝑖 to transmit data to MT 𝑗.
𝑑𝑟
𝑖,𝑗 represents the energy consumed by MT 𝑗 to receive data 𝑌𝑖,𝑗 from
TR 𝑖, and can be expressed as follows:

𝑑𝑟
𝑖,𝑗 = 𝑃 𝑑𝑟𝑗 ⋅ 𝑇 𝑑𝑡𝑖,𝑗 = 𝑃 𝑑𝑟𝑖 ⋅

𝑌𝑖,𝑗
𝑅𝑑𝑖,𝑗

(11)

here 𝑃 𝑑𝑟𝑗 is the power consumed by MT 𝑗 to receive data from MTR 𝑖.
𝑑𝑐
𝑖,𝑗 is the energy consumed by MT 𝑗 to execute 𝑌𝑖,𝑗 , and can be
xpressed as follows:
𝑑𝑐
𝑖,𝑗 = C𝑑𝑗 ⋅ 𝑌𝑖,𝑗 ⋅ (𝜇

𝑑
𝑖,𝑗 ⋅ 𝐹

𝑑
𝑗 )

2 (12)

here C𝑑𝑗 is the effective switched capacitance of MT 𝑗, reflecting the
nergy consumption coefficient related to its CPU performance [14,21].

.4.3. Edge computing
The total delay 𝑇 𝑒𝑖,𝑛 for MEC offloading includes computation and

ransmission delay as follows:
𝑒 = 𝑇 𝑒𝑐 + 𝑇 𝑒𝑡 (13)
5

𝑖,𝑛 𝑖,𝑛 𝑖,𝑛 c
here 𝑇 𝑒𝑐𝑖,𝑛 represents the computation delay of MEC 𝑛 to execute 𝑍𝑖,𝑛
equested by MTR 𝑖, and expressed as follows:

𝑒𝑐
𝑖,𝑛 =

𝑍𝑖,𝑛 ⋅ 𝐹𝑖
𝜇𝑒𝑖,𝑛 ⋅ 𝐹 𝑒𝑛

(14)

he transmission delay 𝑇 𝑒𝑡𝑖,𝑛 represents the communication delay for
ransmitting 𝑍𝑖,𝑛 bits from MTR 𝑖 to MEC 𝑛.

𝑒𝑡
𝑖,𝑛 =

𝑍𝑖,𝑛
𝑅𝑒𝑖,𝑛

(15)

where 𝑅𝑒𝑖,𝑛 is the uplink transmission rate from MTR 𝑖 to MEC 𝑛. In
our work, we aim at minimizing the energy consumption of the mobile
terminals. Accordingly, we do not consider in our formulation the
energy consumed by the MEC and MCC for data processing. We then
denote by 𝐸𝑒𝑖,𝑛 the energy consumed by MTR 𝑖 to transmit data to
MEC 𝑛, expressed as follows:

𝐸𝑒𝑖,𝑛 = 𝑃 𝑒𝑡𝑖 ⋅ 𝑇 𝑒𝑡𝑖,𝑛 = 𝑃 𝑒𝑡𝑖 ⋅
𝑍𝑖,𝑛
𝑅𝑒𝑖,𝑛

(16)

where 𝑃 𝑒𝑡𝑖 is the power consumed by MTR 𝑖 to transmit 𝑍𝑖,𝑛 data bits
o MEC 𝑛.

.4.4. Cloud computing
The total MCC offloading delay 𝑇 𝑐𝑖 can be expressed as follows:

𝑐
𝑖 = 𝑇 𝑐𝑐𝑖 + 𝑇 𝑐𝑡𝑖 (17)

here the computation delay 𝑇 𝑐𝑐𝑖 at MCC to execute 𝑊𝑖 data from task
𝑖 requested by MTR 𝑖 can be expressed as follows:

𝑐𝑐
𝑖 =

𝑊𝑖 ⋅ 𝐹𝑖
𝜇𝑐𝑖 ⋅ 𝐹 𝑐

(18)

n our work, we assume the computation delay at the MCC is much
maller than the transmission delay due to the high computation ca-
abilities of the cloud. Accordingly, we include in our problem for-
ulation, a constraint guaranteeing the minimum cloud computation

esources allocation to MTR 𝑖 ensuring 𝑇 𝑐𝑐𝑖 to be negligible (less than
𝑁𝑒𝑔). Hence, we consider 𝑇 𝑐𝑖 = 𝑇 𝑐𝑡𝑖 where 𝑇 𝑐𝑡𝑖 represents the transmis-

ion delay of 𝑊𝑖 bits to MCC.

𝑐𝑡
𝑖 =

𝑊𝑖
𝑅𝑐𝑖

(19)

where 𝑅𝑐𝑖 is the uplink transmission rate from MTR 𝑖 to MCC. We con-
sider 𝐸𝑐𝑖 the data transmission energy consumption for MCC offloading
that can be expressed as follows:

𝐸𝑐𝑖 = 𝑃 𝑐𝑡𝑖 ⋅ 𝑇 𝑐𝑡𝑖 = 𝑃 𝑐𝑡𝑖 ⋅
𝑊𝑖
𝑅𝑐𝑖

(20)

where 𝑃 𝑐𝑡𝑖 is the power consumed by MTR 𝑖 to transmit data to MCC.

.5. Pricing models

The prices included in the formulation incorporate the service cost
o the operator. We consider the transmission and computation mone-
ary cost for data task offloading. We assume the pricing model follows
usage-based pricing, which charges in proportion to the amount of

ata consumed. In general, some interfaces have much higher cost than
thers, e.g., cellular typically has higher cost than WiFi or Bluetooth.
ote that the monetary cost is considered as an input variable to the
roposed approaches and can be updated on a time slot basis in the
ase of dynamic pricing that may depend on various factors including
eak hours, availability of resources, subscription type and market
ompetition status.
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3.5.1. Pricing for D2D offloading
In our work, we assume that the network operator pays the peer

MTs incentives for sharing their radio and computation resources and
allowing D2D offloading. We assume the peer MTs are paid 𝜙𝑑𝑡𝑖,𝑗 USD
er bit as incentives for transmission over SR connectivity. We intend
o make our formulation general and accommodate for any incentive
nd pricing strategy over any SR connectivity, which may also be free
n some cases such as over Bluetooth. We denote by 𝜙𝑑𝑐𝑖,𝑗 the incentives
n USD per Hz paid to MT 𝑗 for sharing their computation resources.
he D2D offloading cost can then be expressed as follows:

𝑑
𝑖,𝑗 = 𝑌𝑖,𝑗 ⋅ 𝜙

𝑑𝑡
𝑖,𝑗 + 𝜇

𝑑
𝑖,𝑗 ⋅ 𝐹

𝑑
𝑗 ⋅ 𝜙𝑑𝑐𝑖,𝑗 (21)

.5.2. Pricing for MEC offloading
We denote by 𝜙𝑒𝑡𝑖,𝑛 the amount of USD charged per bit for trans-

ission over WiFi, and 𝜙𝑒𝑐𝑖,𝑛, the amount of USD charged per Hz for
omputation processing at MEC 𝑛. The MEC offloading cost can then

be expressed as follows:

𝜙𝑒𝑖,𝑛 = 𝑍𝑖,𝑛 ⋅ 𝜙
𝑒𝑡
𝑖,𝑛 + 𝜇

𝑒
𝑖,𝑛 ⋅ 𝐹

𝑒
𝑛 ⋅ 𝜙𝑒𝑐𝑖,𝑛 (22)

3.5.3. Pricing for cloud offloading
Similarly, we denote by 𝜙𝑐𝑡𝑖 the amount of USD charged per bit

for transmission over the cellular network, and 𝜙𝑐𝑐𝑖 the amount of
USD charged per Hz for computation processing at MCC. The MCC
offloading cost can then be expressed as follows:

𝜙𝑐𝑖 = 𝑊𝑖 ⋅ 𝜙
𝑐𝑡
𝑖 + 𝜇𝑐𝑖 ⋅ 𝐹

𝑐 ⋅ 𝜙𝑐𝑐𝑖 (23)

4. Optimal joint computing, communication and cost-aware task
offloading

In this section, we formulate the joint computing, communication
and cost-aware task offloading optimization problem. We present first
the multi-objective function in Section 4.1. We then differentiate be-
tween two sets of constraints: (1) computation resource allocation
constraints in Section 4.2, and (2) communication and radio resource
allocation constraints in Section 4.3. The problem is a mixed-integer
non-linear program, which we linearize in Section 4.4.

4.1. Optimal joint computing, communication and cost-aware task offload-
ing: Multi-objective function

The objective function of our joint computing, communication and
cost-aware offloading can be expressed as follows:

argmax
𝐗,𝐘,𝐙,𝐖,𝝅
𝝁𝒅 ,𝝁𝒆 ,𝝁𝒄

𝑳𝒅 ,𝑳𝒆 ,𝑳𝒄 ,𝜼𝒄

𝛽1
𝛱
𝐴

− 𝛽2
𝛹
𝛹𝑚𝑎𝑥

− (1 − 𝛽1 − 𝛽2)
𝛷

𝛷𝑚𝑎𝑥
(24)

The objective function in (24) represents the weighted sum of
he three objectives aiming at maximizing the number of completed
asks 𝛱 =

∑𝐴
𝑖=1 𝜋𝑖, while minimizing the energy consumption 𝛹 and

onetary cost 𝛷. We used normalization in (24) to adjust the different
arameters of different scales to a common scale ranging between 0 and
. We assume 𝛹𝑚𝑎𝑥 and 𝛷𝑚𝑎𝑥 are the maximum energy consumption and
onetary cost, where all the MTRs are served with the highest cost. The
inimum energy and monetary cost consumption is assumed to be 0
hen no transmission occurs. The expressions for 𝛹 , 𝛹𝑚𝑎𝑥, 𝛷 and 𝛷𝑚𝑎𝑥
re detailed in the next subsections. 𝛽1 and 𝛽2 are positive coefficients
ndicating the impact of maximizing the number of completed tasks
nd minimizing the energy consumption, respectively. 𝛽1 and 𝛽2 vary
etween 0 and 1 giving weights to the normalized values of tasks
ompleted and energy consumed, respectively.
6

.1.1. Objective function — minimizing energy consumption
The total energy consumption of the system is denoted by 𝛹 and

can be expressed as follows:

𝛹 =
𝐴
∑

𝑖=1
𝐸𝑖 =

𝐴
∑

𝑖=1

(

𝐸𝑙𝑖 +
𝐽
∑

𝑗=1
𝐸𝑑𝑖,𝑗 +

𝑁
∑

𝑛=1
𝐸𝑒𝑖,𝑛 + 𝐸

𝑐
𝑖

)

(25)

where 𝐸𝑖 is the energy consumed by MTR 𝑖 for local computing, D2D,
MEC and MCC offloading. 𝐸𝑙𝑖 , 𝐸

𝑑
𝑖,𝑗 , 𝐸

𝑒
𝑖,𝑛 and 𝐸𝑐𝑖 are expressed in (5),

(9), (16) and (20), respectively. We assume 𝛹𝑚𝑎𝑥 to be the maximum
energy consumed when all the MTRs are served using the maximum
energy consuming interface. 𝛹𝑚𝑎𝑥 can be expressed as follows:

𝛹𝑚𝑎𝑥 =
𝐴
∑

𝑖=1
𝜓𝑚𝑎𝑥𝑖 (26)

where 𝜓𝑚𝑎𝑥𝑖 is the maximum energy consumed for processing all the
data 𝐷𝑖 of the task 𝑈𝑖 requested by MTR 𝑖. 𝜓𝑚𝑎𝑥𝑖 can be expressed as
follows: 𝜓𝑚𝑎𝑥𝑖 = max(𝜓 𝑙𝑖 , 𝜓

𝑑
𝑖 , 𝜓

𝑒
𝑖 , 𝜓

𝑐
𝑖 ). We denote by 𝜓 𝑙𝑖 , 𝜓

𝑑
𝑖 , 𝜓𝑒𝑖 and 𝜓𝑐𝑖 ,

he maximum energy consumed for processing all the data 𝐷𝑖 of the
task 𝑈𝑖 requested by MTR 𝑖 using local computation, D2D, MEC and

CC offloading, respectively.

.1.2. Objective function — minimizing monetary cost
We aim at minimizing the total monetary cost 𝛷 of all the requester

TRs, which can be expressed as follows:

=
𝐴
∑

𝑖=1
𝜙𝑖 =

𝐴
∑

𝑖=1

( 𝐽
∑

𝑗=1
𝜙𝑑𝑖,𝑗 +

𝑁
∑

𝑛=1
𝜙𝑒𝑖,𝑛 + 𝜙

𝑐
𝑖

)

(27)

where 𝜙𝑖 is the monetary cost for completing task 𝑈𝑖 requested by
MTR 𝑖. 𝜙𝑑𝑖,𝑗 , 𝜙

𝑒
𝑖,𝑛 and 𝜙𝑐𝑖 are expressed in (21), (22) and (23), respec-

tively. We assume 𝛷𝑚𝑎𝑥 to be the maximum monetary cost consumed
when all the MTRs are served using the highest interface cost. 𝛷𝑚𝑎𝑥 can
be expressed as follows:

𝛷𝑚𝑎𝑥 =
𝐴
∑

𝑖=1
𝜙𝑚𝑎𝑥𝑖 (28)

where 𝜙𝑚𝑎𝑥𝑖 = max(𝛤 𝑑𝑖 , 𝛤
𝑒
𝑖 , 𝛤

𝑐
𝑖 ) denotes the maximum cost consumed

or processing all the data 𝐷𝑖 of the task 𝑈𝑖 requested by MTR 𝑖. We
enote by 𝛤 𝑑𝑖 , 𝛤 𝑒𝑖 and 𝛤 𝑐𝑖 the maximum monetary cost consumed for
ransmitting and processing all the data 𝐷𝑖 of the task 𝑈𝑖 requested by
TR 𝑖 using D2D, MEC, MCC task offloading, respectively.

.2. Optimal joint computing, communication and cost-aware task offload-
ng: Computation resources constraints

The multi-objective optimization problem is subjected to computa-
ion resource allocation constraints and limitations as follows:

≤ 𝑋𝑖 ≤ 𝐷𝑖 ⋅ 𝜋𝑖,∀𝑖 (29)

≤ 𝑌𝑖,𝑗 ≤ 𝐷𝑖 ⋅ 𝜋𝑖 ⋅ 𝑣
𝑑
𝑖,𝑗 ,∀𝑖,∀𝑗 (30)

≤ 𝑍𝑖,𝑛 ≤ 𝐷𝑖 ⋅ 𝜋𝑖 ⋅ 𝑣
𝑒
𝑖,𝑛,∀𝑖,∀𝑛 (31)

≤ 𝑊𝑖 ≤ 𝐷𝑖 ⋅ 𝜋𝑖,∀𝑖 (32)

𝑖,𝑗 ⋅ 𝜖 ≤ 𝜇𝑑𝑖,𝑗 ≤ 𝜋𝑖 ⋅ 𝑣
𝑑
𝑖,𝑗 ,∀𝑖,∀𝑗 (33)

𝑖,𝑗 ⋅ 𝜖 ≤ 𝜇𝑒𝑖,𝑛 ≤ 𝜋𝑖 ⋅ 𝑣
𝑒
𝑖,𝑛,∀𝑖,∀𝑛 (34)

𝑖 ⋅ 𝜖 ≤ 𝜇𝑐𝑖 ≤ 𝜋𝑖,∀𝑖 (35)
𝐴
∑

𝑖=1
𝜇𝑑𝑖,𝑗 ≤ 1,∀𝑗 (36)

𝐴
∑

𝑖=1
𝜇𝑒𝑖,𝑛 ≤ 1,∀𝑛 (37)

𝐴
∑

𝜇𝑐𝑖 ≤ 1 (38)

𝑖=1
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𝜇

𝜇

𝑇

𝑇

𝐺

𝐿

𝐿

𝐿

𝐿

𝐿

𝐿

𝜇𝑑𝑖,𝑗 ≤ 𝑌𝑖,𝑗 ,∀𝑖,∀𝑗 (39)
𝑒
𝑖,𝑛 ≤ 𝑍𝑖,𝑛,∀𝑖,∀𝑛 (40)
𝑐
𝑖 ≤ 𝑊𝑖,∀𝑖 (41)

𝑖 ≤ 𝑇 𝑚𝑎𝑥𝑖 ,∀𝑖 (42)
𝑐𝑐
𝑖 ≤ 𝑇𝑁𝑒𝑔 ,∀𝑖 (43)

𝑖 = 𝐷𝑖 ⋅ 𝜋𝑖,∀𝑖 (44)

• Constraints (29) to (32) indicate the upper and lower bounds for
the data size to be executed locally, or offloaded to a cooperating
node. Moreover, the constraints ensure that no data is offloaded
if the task cannot be completed, or the MTR is out of the coverage
range of the cooperating node.

• Constraints (33) to (35) ensure that the computation resources
are allocated to MTR 𝑖 only if the task 𝑈𝑖 will be completed, and
data tasks are sent to the peer MTs, MEC or MCC within their
corresponding coverage range.

• Constraints (36) to (38) ensure that the computation resources
allocated to the MTRs is less than or equal to the computation
capacity of every MT, MEC or MCC.

• Constraints (39) to (41) ensure that the computation resources of
every MT, MEC or MCC are allocated only when data tasks are
offloaded from the MTRs.

• Constraint (42) guarantees that the time for completing a task
should be less than the maximum time limit 𝑇 𝑚𝑎𝑥𝑖 . In our work,
we assume parallel processing where MTR 𝑖 can locally process
while transmitting and receiving data. Accordingly, the latency
of a task 𝑈𝑖, denoted by 𝑇𝑖, is the maximum delay caused by the
computation models adopted, and can be expressed as follows:

𝑇𝑖 = max(𝑇 𝑙𝑖 , 𝑇
𝑑
𝑖 , 𝑇

𝑒
𝑖 , 𝑇

𝑐
𝑖 ) (45)

where 𝑇 𝑑𝑖 , 𝑇 𝑒𝑖 and 𝑇 𝑐𝑖 are the maximum latency caused by D2D
offloading to any MT 𝑗, edge offloading to any MEC 𝑛 and cloud
offloading, respectively.

• Constraint (43) ensures that the computation time at the cloud
is negligible, which enforces minimum computation resource 𝜇𝑐𝑖
allocation by the MCC to MTR 𝑖.

• Constraint (44) is used to indicate whether the task 𝑈𝑖 requested
by MTR 𝑖 is considered completed, i.e.: the computation data task
𝐷𝑖 is completely offloaded and executed within 𝑇 𝑚𝑎𝑥𝑖 . The deci-
sion variable 𝜋𝑖 should be set to one, indicating the completion of
the task 𝑈𝑖 when the total amount of data offloaded 𝐺𝑖 expressed
in (1) is equal to the data size 𝐷𝑖 of the task 𝑈𝑖 requested by
MTR 𝑖, and 0 otherwise. Accordingly, when the task cannot be
completed due to the lack of computation or radio resources, 𝜋𝑖
is set to zero; in addition, no data should be offloaded or allocated
for processing, hence, setting 𝐺𝑖 to zero.

4.3. Optimal joint computing, communication and cost-aware task offload-
ing: Communication resources constraints

The optimization problem is also subjected to communication and
radio resource allocation constraints and limitations as follows:

𝐿𝑑𝑖,𝑗 ≤ 𝑌𝑖,𝑗 ,∀𝑖,∀𝑗 (46)

𝐿𝑑𝑖,𝑗 ≥ 𝜇𝑑𝑖,𝑗 ,∀𝑖,∀𝑗 (47)

𝐿𝑑𝑖,𝑗 ≤ 𝜋𝑖,∀𝑖,∀𝑗 (48)
𝑒
𝑖,𝑛 ≤ 𝑍𝑖,𝑛,∀𝑖,∀𝑛 (49)
𝑒
𝑖,𝑛 ≥ 𝜇𝑒𝑖,𝑛,∀𝑖,∀𝑛 (50)
𝑒
𝑖,𝑛 ≤ 𝜋𝑖,∀𝑖,∀𝑛 (51)
𝑐

7

𝑖 ≤ 𝑊𝑖,∀𝑖 (52)
𝑐
𝑖 ≥ 𝜇𝑐𝑖 ,∀𝑖 (53)
𝑐
𝑖 ≤ 𝜋𝑖,∀𝑖 (54)
𝐽
∑

𝑗=1
𝐿𝑑𝑖,𝑗 ≤ 𝜁𝑑 ,∀𝑖 (55)

𝑁
∑

𝑛=1
𝐿𝑒𝑖,𝑛 ≤ 𝜁𝑒,∀𝑖 (56)

𝐴
∑

𝑖=1
𝐿𝑑𝑖,𝑗 ≤ 𝛺𝑑 ,∀𝑗 (57)

𝐴
∑

𝑖=1
𝐿𝑒𝑖,𝑛 ≤ 𝛺𝑒,∀𝑛 (58)

𝐴
∑

𝑖=1
𝐿𝑐𝑖 ≤ 𝛺𝑐 ,∀𝑛 (59)

𝜇𝑐𝑖 ≤ 𝜂𝑐𝑖 ≤ 𝐿𝑐𝑖 ⋅ 𝜁
𝑐 ,∀𝑖 (60)

𝐴
∑

𝑖=1
𝜂𝑐𝑖 ≤ 𝛺𝑐 (61)

• Constraints (46) to (48) guarantee that a D2D channel is reserved
for the transmission between MTR 𝑖 and MT 𝑗, in case MT 𝑗 helps
MTR 𝑖 in executing part of its computation task. Accordingly,
the decision variables 𝐿𝑑𝑖,𝑗 are set to one indicating a channel
reservation for the transmission between MTR 𝑖 and MT 𝑗 when
(a) the data 𝑌𝑖,𝑗 is offloaded to MT 𝑗 (Constraint (46)), (b) a
fraction of the MT 𝑗 computation resources is allocated to serve
MTR 𝑖(47), and (c) the task will be completed (Constraint (48)).
A connection is then established and a channel is allocated only
if the task can be completed and computation data is offloaded to
the corresponding node within its limited coverage range.

• Similar to (46) to (48), the constraints (49) to (51) and (52) to
(54) guarantee that a WiFi and a cellular link are reserved for
MTR 𝑖 for MEC and MCC offloading, respectively.

• Constraints (55) and (56) limit number of D2D and WiFi connec-
tions of MTR 𝑖 to 𝜁𝑑 and 𝜁𝑒, respectively.

• Constraints (57), (58) and (59) ensure that the number of devices
served by a peer MT 𝑗, MEC 𝑛 and MCC is less than 𝛺𝑑 , 𝛺𝑒 and
𝛺𝑐 , respectively.

• Constraint (60) ensures that the number of subchannels 𝜂𝑐𝑖 allo-
cated to MTR 𝑖 for MCC offloading is less than 𝜁 𝑐 . Moreover, 𝜂𝑐𝑖
is set to zero if no MCC offloading occurs.

• Constraint (61) ensures that the number of subchannels allocated
to all the MTRs is less than the maximum number of cellular
subchannels 𝛺𝑐 .

4.4. Problem linearization and complexity

The problem is a mixed-integer non-linear program. The non-
linearity comes from the objective function when energy consumption
is considered, in addition to constraint (42). To reduce the complexity
of the problem, we transform it into a mixed-integer linear program
by assumption that the computation resources are assigned in terms
of chunks; i.e.: the decision variables 𝝁𝒅 and 𝝁𝒆 representing the
fraction of assigned computation resources are then transformed from
continuous to discrete variables. This conversion leads to some dis-
cretization error that can be significantly reduced by increasing the
number of discrete values at the expense of increased complexity. We
then provide a corresponding transformation of the problem using

several linearization techniques as follows [32].
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4.4.1. Constraints linearization
Considering maximizing the number of completed tasks as the only

objective with 𝛽1 = 1 and 𝛽2 = 0, the non-linearity of the problem
rises solely from constraint (42), which guarantees that the time for
ompleting a task should be less than the maximum time limit 𝑇 𝑚𝑎𝑥𝑖 .
s presented in (45), we aim at ensuring that the local computing

atency 𝑇 𝑙𝑖 , D2D offloading latency 𝑇 𝑑𝑖,𝑗 to MT 𝑗, MEC offloading latency
𝑒
𝑖,𝑛 to MEC 𝑛, and MCC offloading latency 𝑇 𝑐𝑖 , are all less than 𝑇 𝑚𝑎𝑥𝑖 .
ccordingly, constraint (42) can first be replaced by the following
onstraints:
𝑙
𝑖 ≤ 𝑇 𝑚𝑎𝑥𝑖 ,∀𝑖 (62)
𝑑
𝑖,𝑗 ≤ 𝑇 𝑚𝑎𝑥𝑖 ,∀𝑖,∀𝑗 (63)
𝑒
𝑖,𝑛 ≤ 𝑇 𝑚𝑎𝑥𝑖 ,∀𝑖,∀𝑛 (64)
𝑐
𝑖 ≤ 𝑇 𝑚𝑎𝑥𝑖 ,∀𝑖 (65)

owever, constraints (63) and (64) are non-linear due to the non-
inearity of the D2D and MEC offloading processing latency, expressed
n (7) and (14), respectively. To eliminate the non-linearity in (63), we
eplace the product of the two continuous variables (𝑌𝑖,𝑗 ⋅𝜇𝑑𝑖,𝑗 ) by a new
ariable 𝑌𝑖,𝑗 as follows. We first assume the computation resources of a
T 𝑗 are divided into 𝐶𝑑 chunks of equal size 𝑆𝑐 . We then transform

he continuous variable 𝜇𝑑𝑖,𝑗 to a discrete variable represented by a sum
f binary variables 𝑎𝑑𝑖,(𝑗,𝑐) indicating the allocation of the computation
esources chunk 𝑐 of MT 𝑗 to MTR 𝑖. Accordingly, 𝜇𝑑𝑖,𝑗 can be expressed
n terms of the binary variables 𝑎𝑑𝑖,(𝑗,𝑐) as follows: 𝜇𝑑𝑖,𝑗 =

1
𝐶𝑑

∑𝐶𝑑
𝑐=1 𝑎

𝑑
𝑖,(𝑗,𝑐).

The product of (𝑌𝑖,𝑗 ⋅ 𝜇𝑑𝑖,𝑗 ) can then be replaced by 𝑌𝑖,𝑗 , expressed as
follows:

𝑌𝑖,𝑗 =
𝐶𝑑𝑗
∑

𝑐=1
𝑌𝑖,(𝑗,𝑐) (66)

where 𝑌𝑖,(𝑗,𝑐) represents the product of (𝑌𝑖,𝑗 ⋅ 𝑎𝑑𝑖,(𝑗,𝑐)). Additional con-
straints are then needed to force 𝑌𝑖,(𝑗,𝑐) to take the value of the product
of (𝑌𝑖,𝑗 ⋅ 𝑎𝑑𝑖,(𝑗,𝑐)), as follows:

𝑌𝑖,(𝑗,𝑐) ≤ 𝐷𝑖 ⋅ 𝑎
𝑑
𝑖,(𝑗,𝑐) (67)

𝑌𝑖,(𝑗,𝑐) ≤ 𝑌𝑖,𝑗 (68)

𝑌𝑖,(𝑗,𝑐) ≥ 𝑌𝑖,𝑗 −𝐷𝑖 ⋅ (1 − 𝑎𝑑𝑖,(𝑗,𝑐)) (69)

𝑌𝑖,(𝑗,𝑐) ≥ 0 (70)

Similarly, constraint (64) can be linearized by introducing a new
variable 𝑍𝑖,𝑛, representing the product of (𝑍𝑖,𝑛 ⋅ 𝜇𝑒𝑖,𝑛) with 𝑎𝑒𝑖,(𝑛,𝑞) and
𝑍𝑖,(𝑛,𝑞) representing the product of (𝑍𝑖,𝑛 ⋅𝑎𝑒𝑖,(𝑛,𝑞)) for 𝑞 = [1,… , 𝐶𝑒], where
𝐶𝑒 is the number of computation chunks resources, in addition to the
needed constraints.

The task offloading problem aiming only at maximizing the number
of completed tasks, 𝛱 =

∑𝐴
𝑖=1 𝜋𝑖, is then transformed to a mixed-

integer linear programming (MILP). In addition to Table 1, the decision
variables are: 𝑎𝑑 and 𝑌 which are 3-dimensional matrices of size 𝐽 ×
𝐴×𝐶𝑑 , 𝑎𝑒 and 𝑍 which are 3-dimensional matrices of size 𝑁 ×𝐴×𝐶𝑒.

4.4.2. Objective function linearization
Minimizing energy consumption in addition to maximizing the num-

ber of completed tasks, make the problem MINLP. In this case, the
objective function in (25) is non-linear due to the non-linear parameters
𝐸𝑑𝑐𝑖,𝑗 and 𝐸𝑐𝑖 . To linearize the 𝐸𝑑𝑐𝑖,𝑗 , we replace the product of (𝑌𝑖,𝑗 ⋅ 𝜇𝑑𝑖,𝑗)
by a new variable 𝑌𝑖,𝑗 , as well as introducing additional constraints
as previously presented. To linearize 𝐸𝑐𝑖 , we replace the continuous
integer variable 𝜂𝑖 representing the number of subchannels allocated
to a requester MTR 𝑖 by a sum of binary variables 𝑎𝑐𝑖,𝑤 where 𝑤 ∈
[1,… 𝜁 𝑐 ], 𝜂𝑖 =

∑𝜁𝑐
𝑤=1 𝑎

𝑐
𝑖,𝑤. We introduce 𝜂𝑖 and let 𝜂𝑖 =

1
𝜂𝑖

. Accordingly,
𝜂 will have discrete values varying from [0, 1 , 1 ,… , 1], which we
8

𝑖 𝜁𝑐 𝜁𝑐−1 w
Fig. 2. Hierarchical allocation for joint computing, communication and cost-aware task
offloading.

represent by binary variables 𝑎𝑐𝑖,𝑤. We then introduce a new variable
𝑊𝑖,𝑤 representing the product of the two variables 𝑎𝑐𝑖,𝑤 and 𝑊𝑖, as well
s new constraints. Accordingly, new decision variables are needed in
ddition to the previous variables: 𝜂 a vector of length 𝐴, 𝑎𝑐 , and 𝑊 ,
atrices of size 𝐴 × (𝜁 𝑐 + 1).

.4.3. Complexity analysis
The multi-objective optimization allocation (OA) problem aiming

t jointly optimizing offloading decision, communication and computa-
ion resource allocation is NP-hard. In fact, the problem can be mapped
o Generalized Assignment Problem (GAP) with multi-resources con-
traints, which is known to be NP-hard [33–36]. The complexity of the
roblem is heavily impacted by the number of possibilities a compu-
ation task can be divided into multiple parts and executed remotely
t multiple bins, in our case nodes including peer MTs, edge servers
nd cloud. These nodes are considered as agents with limited radio
nd computation resources. They are assigned parts of the computation
asks to be performed without exceeding their capacity budget while
aximizing the total profit of the assignment which is in our case

he number of completed tasks, energy consumption and monetary
ost while meeting latency, radio and computation constraints. More-
ver, the problem involves both binary and real variables, and has a
uite large size due the large number of nodes. The total number of
ariables involved is equal to 𝐴

(

𝐽
(

2 + 3𝐶𝑑
)

+ 2𝑁 (1 + 𝐶𝑒) + 2𝜁 𝑐 + 8
)

.
ence, global optimal solution may be unfeasible and hard to obtain

n reasonable time especially when the number of mobile terminals
rows. Therefore, we propose two sub-optimal approaches to reduce
he optimal problem time complexity.

. Problem decomposition: Hierarchical allocation

The complexity of the multi-objective optimization allocation (OA)
omes mainly from the large number of decision variables and con-
traints especially in large scale networks. Therefore, to reduce the
omplexity of the joint multi-objective optimization problem, we pro-
ose decomposing the problem into two optimization sub-problems
ith different objectives, which has large impact on reducing the num-
er of decision variables and system constraints. Hence, as presented in
ig. 2, we decompose the problem into two optimization sub-problems
olved consecutively as follows: (1) we solve the optimal allocation
hile maximizing the number of completed tasks only, (2) we use the

olution of the problem 𝜋 to identify the MTRs served, and (3) we
hen solve the problem of decision offloading, radio and computation
esource allocation for the MTRs determined by 𝜋 while minimizing
he total energy consumption and monetary cost. In other words, given
he tasks completed, we optimally offload the computation data and
llocate radio and computation resources with minimum energy and
onetary cost. In this case, 𝜋 is no longer considered as a decision

ariable and the number of requesters is reduced to the number of
TRs served only. This allows the proposed HA approach to provide

ptimal number of completed tasks, with sub-optimal performance in
erms of energy consumption and monetary cost, compared to those
f the multi-objective OA but with less execution time. In scenarios

here all MTRs can be served, the proposed HA approach may not have
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Fig. 3. Iterative allocation for joint computing, communication and cost-aware task
ffloading.

igh impact on reducing the execution time. Similarly to the multi-
bjective OA, the HA problem is NP-hard. Optimal solutions may not be
chievable in real-time for dense D2D-enabled Het-MEC networks. This
hows the importance of finding real-time fast sub-optimal solutions
roviding a balance between time complexity, number of completed
asks, energy consumption and monetary cost for large-scale networks
ith low latency applications.

. Iterative allocation for joint computing, communication and
ost-aware task offloading

In this section, we propose an iterative allocation (IA) approach
ddressing jointly offloading decision, radio and computation resource
llocation while providing fast sub-optimal solutions with low time
omplexity. The MTRs data tasks are assigned sequentially to be of-
loaded to MTs, MECs and cloud, while reducing energy consumption
nd monetary cost. We design our proposed IA approach to complete
he largest number of completed tasks by giving priority to MTRs with
ower deadline first, restricting any computation offloading in case the
ask can be performed locally, selecting offloading strategies that pro-
ide the lowest energy consumption and monetary cost, and reducing
he usage of external resources by reserving the cloud resources for
erving more MTRs by favoring completion of the task without MCC
ffloading.

As presented in Fig. 3 and detailed in Algorithm 1, the MTRs are
irst sorted in ascending order to be served based on their task deadline
𝑚𝑎𝑥
𝑖 , and then based on the number of possible connections which
an be established with the different nodes in their proximity (lines 1–
). The requester tasks are then processed to be offloaded sequentially
lines 5–23). Accordingly, for every MTR 𝑖, the performance of every
onnection 𝑙 is evaluated based on a general utility U reflecting the

trade-off provided between monetary cost and energy consumption
(lines 6–9). U is composed of the different utilities 𝑢𝑖,𝑙 for processing 𝐷𝑢

its using maximum computation capacity of node 𝑝 over connection 𝑙.
tility 𝑢𝑖,𝑙 can be computed as follows:

𝑖,𝑙 = 𝛽𝑢𝑒𝑖,𝑙 + (1 − 𝛽)𝑢𝑐𝑖,𝑙 (71)

where 𝑢𝑒𝑖,𝑙 = 𝐸𝑖,𝑙∕𝐸𝑚𝑎𝑥 and 𝑢𝑐𝑖,𝑙 = 𝜙𝑖,𝑙∕𝜙𝑚𝑎𝑥, 𝐸𝑖,𝑙 and 𝜙𝑖,𝑙 are the
𝑢

9

energy and cost consumed for processing 𝐷 bits by the corresponding
Algorithm 1: The proposed iterative allocation (IA) for joint
computing, communication and cost-aware task offloading
Input : System parameters presented in Table 1
Output: - Tasks completed: 𝜋𝑖

- Data task offloading decision: 𝑋𝑖, 𝑌𝑖,𝑗 , 𝑍𝑖,𝑛, 𝑊𝑖
- Radio resource allocation: 𝐿𝑑𝑖,𝑗 , 𝐿

𝑒
𝑖,𝑛, 𝐿

𝑐
𝑖 , 𝜂

𝑐
𝑖

- Computation resource allocation: 𝜇𝑑𝑖,𝑗 ,𝜇𝑒𝑖,𝑛 ,𝜇𝑐𝑖
1 Sort the MTRs in ascending order based on 𝑇𝑚𝑎𝑥𝑖
2 Check the nodes (MTs and MECs) within coverage range for every MTR
3 Create a list of possible connections C for every MTR
4 Sort MTRs with same 𝑇𝑚𝑎𝑥𝑖 in ascending order based on the number of

connections
5 Assign data task and allocate radio and computation resources for a MTR 𝑖
6 (a) Compute the general utilities U for connections C as follows:
7 ∙ Check every possible connection 𝑙 if it is a MT 𝑗, MEC 𝑛 or MCC
8 ∙ Estimate the transmission rate over 𝑙
9 ∙ Compute utility 𝑢𝑖,𝑙 for using connection 𝑙 based on (71)
10 (b) Sort connections C based on U
11 (c) Select the maximum number of D2D and MEC connections allowed with

lowest 𝑢𝑖,𝑙
12 (d) Compute the maximum data D𝑖,𝑙 size that can be processed within 𝑇𝑚𝑎𝑥𝑖

locally based on (4), and using connection 𝑙 based on (6) when 𝑙 is a MT,
(13) when 𝑙 is a MEC, and (18) and (19) when 𝑙 is the MCC.

13 (e) If task 𝑈𝑖 of MTR 𝑖 cannot be completed
14 ∙ Set 𝜋𝑖 ← 0
15 else task 𝑈𝑖 can be completed
16 ∙ Set 𝜋𝑖 ← 1
17 ∙ if task 𝑈𝑖 can be completed locally
18 -Set 𝑋𝑖 ← 𝐷𝑖
19 ∙ elseif task 𝑈𝑖 cannot be completed without MCC offloading
20 - Offload data based on sub-problem1
21 ∙ else
22 - Offload data to MTs and MECs based on sub-problem2
23 (f) Update the remaining available resources
24 Repeat process (lines 5–23) for all MTR 𝑖 + 1
25 Reallocate available channels left to MTRs using MCC offloading

Sub-problem 1: The proposed IA when task cannot be completed
without MCC offloading in Algorithm 1- line 20
1 Allocate the maximum allowed data to be processed locally and over every

connections 𝑙 within 𝑇𝑚𝑎𝑥𝑖 using all the remaining available computation
resources 𝜇𝑝𝑖,𝑙 of the node 𝑝 as follows:

2 If 𝑙 corresponds to a connection with MT 𝑗
3 ∙ Set 𝑌𝑖,𝑗 ← D𝑖,𝑙 and set 𝐿𝑑𝑖,𝑗 ← 1

4 ∙ Set 𝜇𝑝𝑖,𝑙 ←
(

1 −
∑𝐴
𝑖=1 𝜇

𝑑
𝑖,𝑗

)

and set 𝜇𝑑𝑖,𝑗 ← 𝜇𝑝𝑖,𝑙
5 else 𝑙 corresponds to a connection with MEC 𝑛
6 ∙ Set 𝑍𝑖,𝑛 ← D𝑖,𝑙 and set 𝐿𝑒𝑖,𝑛 ← 1

7 ∙ Set 𝜇𝑝𝑖,𝑙 ←
(

1 −
∑𝐴
𝑖=1 𝜇

𝑒
𝑖,𝑛

)

and set 𝜇𝑒𝑖,𝑛 ← 𝜇𝑝𝑖,𝑙
8 Offload the remaining data to the MCC with minimum number of cellular

subchannels
9 ∙ Set 𝑊𝑖 ←

(

𝐷𝑖 −𝑋𝑖 −
∑𝐽
𝑗=1 𝑌𝑖,𝑗 −

∑𝑁
𝑛=1 𝑍𝑖,𝑛

)

10 ∙ Set 𝐿𝑐𝑖 ← 1,
11 ∙ Allocate minimum computation resources to execute 𝑊𝑖 within a negligible

computation time based on (18)
12 ∙ Allocate minimum number of subchannels to execute 𝑊𝑖 within 𝑇𝑚𝑎𝑥𝑖

based on (19)

node, respectively. 𝛽 weight factor indicating the impact of minimizing
energy consumption. 𝐸𝑚𝑎𝑥 and 𝜙𝑚𝑎𝑥 are the maximum energy and cost
consumed for processing 𝐷𝑢 for all MTRs. The connection 𝑙 providing
he minimum utility represents the most efficient connection with low
nergy and cost. Accordingly, the connections are sorted in ascending
rder based on their utilities (line 10). The maximum allowable number
f D2D and MEC connections are selected based on their utilities and
imited by 𝜁𝑑 and 𝜁𝑒, respectively (line 11). The maximum allowed data

to be offloaded using every connection considering transmission and
computation time limitation is computed to check if the MTR can be
served (line 12). If the amount of data allowed over all the interfaces in-
cluding local execution, D2D, MEC and MCC offloading is less than 𝐷𝑖,
the task cannot be completed; 𝜋𝑖 is set to zero and MTR is considered
not served (lines 13–14). Otherwise, MTR 𝑖 can be served, and 𝜋𝑖 is set
to one (lines 15–22). First, the IA approach restricts any computation
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offloading in case the task can be performed locally to reduce the usage
of external resources. In addition, it reserved the cloud resources for
serving more MTRs by favoring completion of the task without MCC
offloading. Accordingly, if task 𝑈𝑖 cannot be performed without the
use of the cloud, the minimum cloud resources to accomplish MTR 𝑖
ask are assigned based on sub-problem 1. Otherwise, task 𝑈𝑖 can
e performed without MCC; that is, the offloading decision and the
esource allocation are performed based on sub-problem 2 while using
2D and MEC offloading only. When all the tasks are processed, the

emaining cellular subchannels are distributed to the MTRs using MCC
ffloading to increase the transmission rate, hence, reducing the energy
onsumption (line 25).

As detailed in Sub-problem 1, if task 𝑈𝑖 cannot be accomplished
ithout MCC, the maximum allowed data to be offloaded using all

he possible connections with peer MTs and MECs are first assigned
lines 1–7). The remaining data needed is assigned to the cloud with
inimum number of subchannels and computation resources (lines
–12).

If 𝑈𝑖 can be accomplished without the MCC, Sub-problem 2 is used
o offload data to peer MTs and MECs only. First, the local computation
esources are fully assigned (line 1), then the connections are evaluated
ased on their performance in terms of energy and monetary cost (lines
–7). A new list of connections 𝑚 ∈ Ĉ is created based on duplicates
f the connections 𝑙 ∈ C using different chunk size of computation
esources available at a node 𝑝. The connections are then sorted based
n their utility �̂�𝑖,𝑚 for processing 𝐷𝑢 bits using specific computation
esources 𝜇𝑝𝑖,𝑚. Every connection 𝑚 is then processed until all the data of
ask 𝑈𝑖 is assigned (lines 8–21). If a previous connection is established
ith the corresponding node 𝑝, larger amount of computation resources
re then needed. Hence, the previous resource allocation with node 𝑝
re released (lines 11–14). The system parameters are then updated
ased on the new assigned resources (line 15). The process is then
epeated until all the data 𝐷𝑖 is assigned.

.1. Complexity analysis

Our proposed IA starts by sorting the MTRs based on their task
eadlines and number of connections. Quicksort algorithm may be used
ith complexity of 𝑂(𝑛𝑙𝑜𝑔𝑛). Then, the MTR are served sequentially
ntil all the 𝐴 requesters are served. For every MTR, the number of
onnections will be limited to 𝐶1 = 𝜁𝑑+𝜁𝑒+1. Accordingly, we compute
he utility function and maximum data to be assigned using maximum
f 𝐶1 connections. If the task cannot be completed locally and requires
he use of cloud resources to complete the task, all the resources are
ully utilized; i.e.: the decision variables 𝑌𝑌𝑌 , 𝑳𝒅 and 𝒖𝒅 for maximum
𝑑 peer MTs will be set, and 𝑍𝑍𝑍 and 𝒖𝒆 for maximum 𝜁𝑒 MECs will

be set. The remaining data is computed assigned to be processed at
the cloud. Hence, the complexity of Sub-problem 1 is very low where
system parameters for maximum 𝐶1 connections are directly set.

If the task can be completed without the use of the cloud, as
presented in Sub-problem 2, 𝐶2 = 𝐶1 ×𝐶𝑑 utilities should be computed
to consider the different combinations of resource allocation, where
the available resources are divided into a maximum of 𝐶𝑑 chunks.
These utilities are checked consecutively until all the data of the MTR
is offloaded. The worst scenario is when the task size is large and
requires almost all the available resources of the 𝜁𝑑 peer MTs and 𝜁𝑒

MECs, hence, all the 𝐶2 utilities are checked. Note that the number
of connections is limited in real-life scenario due the limitation of
the number of orthogonal channels assigned to the MTRs and to the
available cooperating peer MTs and MEC servers in proximity of the
requester. For instance, in our work, we assume the resources are
divided into 𝐶𝑑 = 𝐶𝑒=10 equal chunk sizes and a MTR 𝑖 can offload
its computation data to up to 𝜁𝑑 = 7 peer MTs over Bluetooth, 𝜁𝑒 = 5
MEC servers over WiFi, simultaneously. Accordingly, 120 utilities will
be considered for data offloading and resource allocation. Numerical
evaluation of the time complexity of the proposed IA is presented in
10

Table 2 and analyzed in Section 7.3.3.
Sub-problem 2: The proposed IA when task can be completed without
MCC offloading in Algorithm 1- line 22
1 Allocate maximum data 𝑋𝑖 to be executed locally within 𝑇𝑚𝑎𝑥𝑖 based on (4)
2 Set the remaining data L ← 𝐷𝑖 −𝑋𝑖
3 Create a new list of connections Ĉ based on duplicates of the connections 𝑙 ∈ C

with different chunk size of computation resources allocation
4 (a) Check the available computation resources 𝜇𝑝𝑖,𝑙 of node 𝑝 (MT or MEC)

linked with connection 𝑙
5 (b) Create connections 𝑚 ∈ Ĉ, which are sub-connections of connection 𝑙 and

node 𝑝 with different computation resource allocation
𝜇𝑝𝑖,𝑚 ∈ [𝑆𝑐𝑝 , 2𝑆

𝑐
𝑝 , ..., 𝜇

𝑝
𝑖,𝑙 ], where 𝑆𝑐𝑝 is the minimum chunk size of

computation resource allocated by node 𝑝
6 Compute �̂�𝑖,𝑚 of processing 𝐷𝑢 data bits at the corresponding node 𝑝 using

specific computation resources 𝜇𝑝𝑖,𝑚 based on (71)
7 Sort connections Ĉ in ascending order based on Û
8 While the remaining data L > 0
9 (a) Identify the node 𝑝 as MT 𝑗 or MEC 𝑛
10 (b) Compute the maximum allowed data D̂𝑚 to be transmitted and processed

using connection 𝑚 at node 𝑝 using computation resources 𝜇𝑝𝑖,𝑚 based on
(6) if 𝑝 is MT 𝑗, and based on (13) if 𝑝 is MEC 𝑛

11 (c) If connection 𝑚 corresponds to a connection with MT 𝑗
12 ∙ If previous connection was established with MT 𝑗; i.e.: 𝐿𝑑𝑖,𝑗=1
13 - Larger amount of computation resources is needed
14 - Set 𝜇𝑑𝑖,𝑗 ← 0 and set L ← L + 𝑌𝑖,𝑗
15 ∙ Set 𝑌𝑖,𝑗 ← min(L, D̂𝑚), set 𝜇𝑑𝑖,𝑗 ← 𝜇𝑝𝑖,𝑚, set L ← L𝑖 − 𝑌𝑖,𝑗 and set 𝐿𝑑𝑖,𝑗 ← 1

16 else connection 𝑚 corresponds to a connection with MEC 𝑛
17 ∙ If previous connection was established with MEC 𝑛; i.e.: 𝐿𝑒𝑖,𝑛=1
18 - Larger amount of computation resources is needed
19 - Set 𝜇𝑒𝑖,𝑛 ← 0 and set L ← L +𝑍𝑖,𝑛
20 ∙ Set 𝑍𝑖,𝑛 = min(L, D̂𝑚), set 𝜇𝑒𝑖,𝑛 ← 𝜇𝑝𝑖,𝑚, set L ← L𝑖 −𝑍𝑖,𝑛 and set 𝐿𝑒𝑖,𝑛 ← 1
21 (d) Repeat process lines 9–20 until 𝐷𝑖 is completed and L = 0

7. Performance results and analysis

In this section, we evaluate the performance of the proposed optimal
and sub-optimal approaches. We first present the performance evalua-
tion, simulation setup including case study topology, assumptions and
system parameters. Then, to validate the proposed iterative allocation
(IA) approach, we compare its performance to the multi-objective OA
and sub-optimal HA approaches in terms of number of completed tasks,
energy consumption, monetary cost and execution time. Lastly, we
evaluate the performance of the proposed IA approach under different
system parameters and models adopted from the literature.

7.1. Performance evaluation

In order to assess the performance effectiveness of the proposed
IA approach, we generated results for the following different baseline
strategies (1–4) and system models (5–8) adopted from the litera-
ture [8,12–14,37]:

1. Complete Local Execution (CLE): the task is allowed to be only
executed locally at the MTR without offloading.

2. Binary Offloading- Complete D2D (BO-CD): the task is allowed to
be fully offloaded to one peer MT.

3. Binary Offloading- Complete MEC (BO-CM): the task is allowed to
be fully offloaded to one MEC server .

4. Binary Offloading- Complete MCC (BO-CC): the task is allowed to
be fully offloaded to the cloud.

5. Partial Offloading- Local and D2D offloading (PO-LD): the task
is allowed to be partially executed locally and remotely using
D2D offloading to one peer MT (PO-LD1) (system model adopted
from [37]), or to multiple peer MTs (PO-LDM), simultaneously
(system model adopted from [8]).

6. Partial Offloading- Local, D2D and MCC offloading : the task is
allowed to be partially executed locally and remotely using D2D
offloading to one peer MT, and MCC offloading, simultaneously
(PO-LDC) (system model adopted from [12,13]).
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7. Partial Offloading- Local, D2D and MEC offloading mode selection
(PO-MSDE): the task is allowed to be partially executed based
on 5 modes: (1) local execution; D2D offloading to one peer
MT including (2) complete D2D offloading, and (3) partial D2D
offloading with local execution; and MEC offloading including
(4) complete MEC offloading, and (5) partial MEC offloading
with local execution (system model adopted from [14]).

8. Partial Offloading- Local, D2D, MEC and MCC offloading mode
selection (PO-MSDEC): we customized PO-MSDE adopted in [14]
to consider two additional modes: (6) complete MCC offloading,
and (7) partial MCC offloading with local execution.

9. Partial offloading- Random Sequential offloading (PO-RSO): the
task is allowed to be partially executed locally, or offloaded to
peer MTs, MECs and MCC. The MTR selects randomly the nodes
to offload its task data to and keeps assigning data sequentially
to nodes until its data is completed.

10. Partial offloading- IA- Maximum Offloading (IA-MO): we cus-
tomized our IA approach and assigned data to the node provid-
ing maximum data execution first, considering the transmission
and computation available capacity.

.2. Simulation setup

As a case study, we consider 𝐴 MTRs requesting computation task
ffloading and 𝐽 peer MTs, which are randomly distributed in an
rea of 40 m × 40 m, where different wireless technologies exist. Our
etwork is composed of four MECs and one MCC. The main system
arameters are detailed below.

.2.1. Computation demands
In our considered scenarios, we assume that a requester MTR 𝑖 has

a computation task 𝑈𝑖 with size 𝐷𝑖 varying uniformly from 1 kbit to
4 Mbits and computation requirement of 𝐹𝑖 = 1000 CPU cycles per bit,
with different delay tolerance 𝑇 𝑚𝑎𝑥[13,14].

7.2.2. Computation resources
We assume that a MTR has limited local computation capacity 𝐹 𝑙𝑖

of 1 GHz [13]. The peer MTs contributing their computation resources
are assumed to have higher capacity 𝐹 𝑑𝑗 of 2 GHz that can be assigned
to serve multiple MTRs. The effective switched capacitance of a MT is
assumed to be C𝑙𝑖 = C𝑑𝑗 = 2 ⋅ 10−26 reflecting the energy consumption
coefficient related to the MT CPU performance [21]. The computation
capacity of the MEC servers 𝐹 𝑒𝑛 and cloud 𝐹 𝑐 are assumed to be 10 GHz
nd 1 THz, respectively [38]. The MT and edge server resources are
ivided into 𝐶𝑑 = 𝐶𝑒 = 10 chunks of size 𝑆𝑐 that is equal to 0.1 ⋅𝐹 𝑑𝑗 and

0.1⋅𝐹 𝑒𝑛 , respectively. The computation cost may vary based on the server
provider, capacity and performance. For instance, Hyve offers cloud
services with 1 GB RAM and 4 × 3.0 GHz CPUs instance for 171 USD
per month [39]. We assume a cost of 2 and 10 USD/month/terminal for
2 GHz and 10 GHz for a peer MT and MEC services, respectively [38].
Based on the previous example fees, the cost of the D2D, MEC, and
MCC processing is computed to be 𝜙𝑑𝑐𝑖,𝑗 = 0.3858 ⋅ 10−12 USD/Hz, 𝜙𝑒𝑐𝑖,𝑛 =
0.7716 ⋅ 10−12 USD/Hz and 𝜙𝑐𝑐𝑖 = 0.5466 ⋅ 10−11 USD/Hz, respectively.

7.2.3. Radio resources
The coverage range of Bluetooth, WiFi, and cellular networks are

set to 10, 15, and 50 m, respectively. The radio channel parameters 𝛼,
𝜅, 𝜎2 and 𝑑0 are set to 3.76, 127 dB, −75 dBm and 10 m, respectively,
with 8-QAM modulation. The bandwidth of Bluetooth, WiFi channels
and cellular subchannels are assumed to be 2, 5 and 10 MHz, respec-
tively [14,28,31]. We assume the power 𝑃 𝑑𝑡, 𝑃 𝑒𝑡 and 𝑃 𝑐𝑡 consumed
by the MTR to transmit over Bluetooth, WiFi and cellular networks to
be 0.5, 0.5, and 0.6 Watts, and the receive power 𝑃 𝑑𝑟 over Bluetooth
to be 0.2 Watts [40,41]. We limit the number of communication links
as follows: a MTR 𝑖 can offload its computation data to up to 𝜁𝑑 =

𝑒

11

7 peer MTs over Bluetooth, 𝜁 = 5 MEC servers over WiFi, and to r
the cloud over the cellular network using multiple subchannels 𝜁 𝑐 ,
simultaneously. A peer MT 𝑗 can serve up to 𝛺𝑑 = 7 MTRs over
Bluetooth, simultaneously. Similarly, a MEC 𝑛 and MCC can serve up
to 𝛺𝑒 = 15 and 𝛺𝑐 = 30 MTRs over WiFi, and cellular networks,
respectively [28,31]. We assume the transmission cost to be free over
Bluetooth, 2 × 10−9 and 11 × 10−9 USD/kByte over WiFi and cellular
networks, respectively [42,43].

7.3. Simulations results and analysis

7.3.1. Multi-objective optimal allocation performance evaluation
In this section, we illustrate solutions for the multi-objective optimal

task offloading considering different network scenarios (NS) in Fig. 4.
The performance evaluation in terms of number of MTRs served, energy
consumption, monetary cost and execution time are detailed in Table 2.
In the first four scenarios, we considered a network composed of 10
mobile terminals out of which 4 are MTRs and 6 are peer MTs, 4 MEC
and a MCC, while varying system parameters such as data size 𝐷𝑖, delay
equirement 𝑇 𝑚𝑎𝑥𝑖 , and number of allowed subchannels 𝜁 𝑐 . Considering
he first NS, the task size 𝐷𝑖 is assumed to be 1 Mbit, 𝑇 𝑚𝑎𝑥𝑖 is set to

1 s, and 𝜁 𝑐𝑖 to one, allowing only one cellular subchannel to every
MTR. The optimal solution in Fig. 4(a) shows that all the users are
served locally, without any data offloading. In the second scenario,
𝑇 𝑚𝑎𝑥𝑖 is reduced to 0.5 s, which forces the MTRs to offload parts of their
computation task to other MTs, MEC and MCC to accomplish the task
within the maximum allowed time. We illustrate three solutions for NS2
reflecting different objectives using different weights in (24) as follows:
(1) maximizing the number of tasks only (𝛽1 = 1, 𝛽2 = 0) in Fig. 4(b), (2)

aximizing the number of completed tasks while minimizing energy
onsumption (𝛽1 = 0.8, 𝛽2 = 0.2) in Fig. 4(c), (3) maximizing the
umber of completed tasks while minimizing energy consumption and
onetary cost (𝛽1 = 0.8, 𝛽2 = 0.1) in Fig. 4(d). The optimal allocation

n Fig. 4(b) aiming at maximizing the number of completed tasks only
s able to serve the 4 MTRs while consuming, in 0.5 s, a total of
.12 Joules and 1.34⋅10−4 USD in one time slot. Considering minimizing
nergy consumption in addition to maximizing the number of com-
leted tasks (𝛽1 = 0.8, 𝛽2 = 0.2), the MTRs tend to use local execution
nd MCC offloading as shown in Fig. 4(c). This is due to the fact that the
ocal execution is less energy consuming and the cellular transmission
ate is high, which reduces the transmission time between the MTR and
he MCC and the MTRs energy consumption. In addition, the MCC pro-
essing time is very low due to its high computation capabilities. The
olution is able to serve the 4 MTRs with a total energy of 0.53 Joules
nd 1.1 ⋅ 10−3 USD per one timeslot, which represents a reduction of
4% in energy consumption, and 50% in monetary cost when compared
o optimizing the number of completed tasks only. When aiming at
aximizing the number of completed tasks while minimizing energy

onsumption and monetary cost, the MTRs tend to use the links with
ower processing and transmission cost, accordingly tend to use local
rocessing and MEC offloading as shown in Fig. 4(d). Compared to the
olution of minimizing the energy consumption in Fig. 4(c), the multi-
bjective solution in Fig. 4(d) provides 98.27% reduction in monetary
ost while consuming 37.57% more energy. The multi-objective OA is
ble to provide 59.52% and 99.1% reduction in energy consumption
nd monetary cost, respectively, compared to maximizing the number
f completed tasks only. Increasing 𝐷𝑖 to 3 Mbits in NS3 reduced
he number of MTRs served due to time limitation. As presented in
ig. 4(e), the computation data tasks of MTRs 1, 2, and 4 cannot be
ransmitted and processed within a time limit of 0.5 s; only MTR 3
s able to complete its task by using D2D, MEC and MCC offloading.
llowing the allocation of two subchannels per MTR (𝜁 𝑐𝑖 = 2) in NS4

ncreases the cellular transmission rate, hence, allowing the completion
f all the tasks within the time limit as presented in Fig. 4(f).

In Figs. 4(g) and (h), we presented solutions considering a larger
etwork composed of 30 mobile terminals out of which 10 are MTRs

𝑚𝑎𝑥
equesting tasks with 𝐷𝑖 = 3 Mbits and 𝑇𝑖 = 0.5 s. We assume the
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Fig. 4. Multi-objective optimal computation offloading solutions for different network scenarios.
Table 2
Performance evaluation of the multi-objective optimal allocation (OA), sub-optimal HA and IA approaches.

Number of MTRs served Energy (Joules per served MTR) Cost (USD per served MTR) Execution (seconds)

NS OA HA IA OA HA IA OA HA IA OA HA IA

NS1 4 4 4 8 ⋅ 10−20 8 ⋅ 10−20 8 ⋅ 10−20 0 0 0 0.72 0.2 0.0458
NS2 4 4 4 0.2147 0.2150 0.2150 4.75 ⋅ 10−6 4.56 ⋅ 10−6 4.56 ⋅ 10−6 30 min 12.45 0.0511
NS3 1 1 1 1.5403 1.5412 1.5412 5.23 ⋅ 10−4 5.21 ⋅ 10−4 5.21 ⋅ 10−4 0.93 0.31 0.0501
NS4 4 4 3 0.7707 0.7707 0.7470 9.45 ⋅ 10−4 9.46 ⋅ 10−4 9.87 ⋅ 10−4 106 min 81.4 min 0.0465
NS5 2 2 2 1.5147 1.5185 1.5185 5 ⋅ 10−4 5.01 ⋅ 10−4 5.01 ⋅ 10−4 76.3 min 49.69 0.0739
NS6 1 1 1 1.5064 1.5269 1.5101 5 ⋅ 10−4 5.1 ⋅ 10−4 5 ⋅ 10−4 1.02 0.49 0.0635
MCC can connect to up to𝛺𝑐 = 30 MTRs in NS5 represented in Fig. 4(g),
while we limit the number of connections 𝛺𝑐 to one MTR in NS6 rep-
resented in Fig. 4(h). Increasing the number of nodes from NS3 to NS5
affected the execution time as presented in Table 2 which increased
from 1 s to 76 min (on a 3.4 GHz Core i7). Limiting the number of MTRs
served to one in NS6, MTR3 providing simultaneously the minimum
energy and cost was selected to be served by the multi-objective OA
approach in Fig. 4(g).

7.3.2. Hierarchical allocation performance evaluation
To compare the performance of the proposed hierarchical allocation

with the multi-objective optimal allocation, we generated sub-optimal
solutions using HA for the network scenarios considered in Fig. 4. As
presented in Table 2, the HA and OA approaches were able to serve
the same number of completed tasks in all the considered scenarios
with sub-optimal performance in terms of monetary cost and energy
consumption, with less time complexity. This is due to the fact that, the
multi-objective OA aims at maximizing the number of completed tasks
which is guaranteed in the first optimal sub-problem of the proposed
HA approach. For instance, all the MTRs were served in NS2 using HA
with 4% less monetary cost and 14% more energy consumption per
served MTR. However, the execution time was reduced from 30 min to
12.45 s, compared to the OA approach.

The number of served MTRs determined by the solution of the first
12

sub-problem in the HA approach plays also a major role in reducing its
time complexity. For instance, the number of MTRs served in NS5 was
reduced to only two out of 10 MTRs, which has notable impact on the
complexity of solving the second HA sub-problem. For this reason, the
execution time was reduced from 76 min to 50 s when the OA and HA
approaches were simulated, respectively. Furthermore, the selection
of the served MTRs by the first sub-problem may lead to sub-optimal
solutions. For instance, the number of cloud connections were reduced
from 30 in NS5 (Fig. 4(g)) to one MTR in NS6 (Fig. 4(h)); i.e.: either
MTR 3 or MTR 7 can be served. The multi-objective OA approach was
able to select the MTR providing simultaneously minimum energy and
monetary cost which is MTR 3 in this case. However, the sub-optimal
HA approach selected MTR 7 instead of MTR 3 which lead to 1.36% and
2% more energy and monetary cost compared to the multi-objective OA
approach.

7.3.3. Iterative allocation performance evaluation
As presented in Table 2, the proposed IA approach was able to pro-

vide sub-optimal performance in terms of number of completed tasks,
energy consumption and monetary cost with very low time complexity.
For instance, considering NS4, the execution time was reduced from
106 and 81.4 min to 0.0465 s, compared to the OA and HA approaches,
respectively. However, the IA approach was able to serve 3 MTRs
out of 4. This is due to the fact that IA is affected by the order for
serving the MTRs. As presented in Fig. 3 and detailed in Algorithm 1,
we give priority to serve first MTRs with lower deadline and number
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Fig. 5. Performance evaluation using different system models and offloading approaches while varying the computation data size.
f connections. Moreover, we aimed at reserving the cloud resources
or serving more MTRs by favoring completion of tasks without MCC
ffloading. That is, if the task cannot be performed without the use
f the cloud, we allocate the maximum allowed data to be executed
ocally, or offloaded to peer MTs, and MECs while fully utilizing their
omputation resources. Hence, the cooperating node will not be able
o share their resources with more than one MTR. MTR 3 was then left
ithout sufficient computation resources to complete its task in NS4.
imilarly, in NS6, MTR 7 was served first which lead to sub-optimal
erformance in terms of energy consumption and monetary cost.

Moreover, we assess the performance of the proposed IA approach
sing different strategies and system models adopted in the open liter-
ture as presented in Section 7.1. We assume our network is composed
f 𝐴= 200 MTRs and 𝐽= 200 MTs, 4 MECs and MCC. We assume 𝜁 𝑐= 1

and 𝑇 𝑚𝑎𝑥= 1 s. We generated results for 100 runs with different MTRs
distributions, and evaluated the average of the following performance
metrics: number of completed tasks in Fig. 5(a), energy consumption
by served MTR in Fig. 5(b), monetary cost per served MTR in Fig. 5(c),
and execution time in Fig. 5(d), while varying the computation task
data size.

As presented in Fig. 5, complete local execution without using
task offloading is energy and cost efficient. However, the computation
capacity of MTRs is limited which restricts the MTRs to complete the
tasks with large data sizes locally. Using fully their local computation
capacity, the MTRs can process up to 1 Mbit within 𝑇 𝑚𝑎𝑥 = 1 s. This
drops the number of completed tasks from 200 to 0 when the data size
exceeds 1 Mbit. Binary offloading approaches without considering local
execution provided limited number of completed tasks. This is due to
the fact that the radio resources of the MEC and MCC are limited to 15
and 30 in our considered scenario. The BO-complete D2D was able to
provide better performance since the number of cooperating devices for
D2D offloading is 200 MTs, which allows more MTRs to communicate
through Bluetooth short range connectivity and complete their tasks,
compared to BO-CM and BO-CC.

Using local execution with computation data offloading including
D2D, MEC and MCC offloading provided better performance in terms
13

of number of completed tasks compared to CLE and BO models with a
tradeoff cost in terms of energy consumption and monetary cost. The
models PO-LD1, PO-MSDE and PO-MSDEC allowed the MTR to divide
its task into two parts, one executed locally and the other is offloaded to
be executed remotely. The performance of these approaches degraded
with the increase of the data size. For instance, when the data size
reached 1.5 Mbits, PO-LD1 showed zero completed tasks since the
computation demands exceed the computation capability of the peer
MTs. PO-MSDE and PO-MSDEC outperform PO-LD1 due to the fact
that they allow the MTRs to select the best mode for computation
data offloading including D2D offloading to one peer MT, and edge
cloud offloading. The number of completed tasks using PO-MSDEC
was higher than PO-MSDE due to the fact that PO-MSDEC allowed
7 selection modes including D2D, MEC and MCC offloading. PO-MSDEC
was able to complete tasks up to 3.75 Mbits compared to 2.3 Mbits
using PO-MSDE. PO-MSDEC consumed slightly less energy consump-
tion per served MTR since the MCC provide high transmission rates,
which reduces the time of transmission. The cost charged by MCC is
higher compared to D2D and MEC offloading used in PO-MSDE which
shows higher monetary cost. PO-LDC allowed the MTR to divide its
task into three parts to be locally executed, offloaded to one peer MT
and MCC, which allowed more tasks to be completed when the data
size is large, namely up to 3.9 Mbits. Dividing the task into up to
8 parts to be locally executed or offloaded to 7 different peer MTs,
simultaneously, allowed PO-LDM without MEC and MCC offloading to
complete a larger number of computation tasks even with high data size
of up to 3.9 Mbits where the computation capacity of the cooperating
MTs was not able to serve any MTRs within the task deadline. PO-LDM
cost is very low in terms of monetary cost, however, it is the highest
in terms of energy consumption since we consider in our model the
transmission, reception and computation energy consumption at the
peer MTs and MTRs. Using PO-RSO provided higher number of served
MTRs compared to conventional approaches since it allows the use all
the possible connections to complete a task. However, the cooperating
node is randomly selected which does not provide any guarantee on
reducing the energy consumption and monetary cost. PO-RSO fully
reserves all the available computation resources of the selected node,

which prevents it to serve other MTRs and does not give any priority
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Fig. 6. Proposed IA approach performance evaluation while varying the number of
TRs 𝐴, data size and 𝑇 𝑚𝑎𝑥.

o MTRs, nor saves the cloud resources by favoring the use of short
ange connectivity. Similarly, considering IA-MO approach, the MTR
ffloads its data to the node providing the maximum data allowed to be
xecuted while fully utilizing its available computation resources which
eads to lower performance compared to the proposed IA approach.

Our proposed IA approach outperforms all other approaches in
erms of completed tasks with a tradeoff cost in terms of energy
onsumption and monetary cost. Despite their simplicity and very low
verage execution time which was 0.0002, 0.0721 and 0.0573 s for
LE, BO-CM and BO-CC, respectively, the baseline and binary offload-

ng approaches performance was very limited. Compared to PO-LDM,
he proposed approach provided on average 37% more completed tasks
hile consuming 8.24% less energy, and 60.81% more monetary cost.
he average execution time of the proposed IA approach was 0.2354 s
on a 3.4 GHz Core i7) which was 8.4% more than the execution time of
O-LDM. Compared to PO-LDC and PO-MSDEC, IA provided on average
7% and 59% more completed tasks while consuming 32.35% and 47%
ore energy consumption and 65.29% and 64.4% less monetary cost,

espectively. Moreover, the execution time was reduced by more than
6.5% and 17.2%, respectively. This is due to the fact that IA allows
ata offload to a larger number of cooperating nodes, including peer
Ts, MECs, and cloud. It also allows more flexible data assignment
here the MTRs select the most efficient solution providing the best

radeoff between energy consumption and monetary cost. The number
f completed task is large even with high computation demands where
he MTRs use more wireless interfaces and energy to complete their
asks within the deadline requirement, while minimizing monetary
ost.

.3.4. Study on the parameters: 𝐴, 𝐷, 𝑇 𝑚𝑎𝑥, 𝜁 𝑐 and 𝛽
In this section, we first evaluate the dynamic performance of the

roposed IA approach by generating average results over 200 time
lots, while varying system parameters such as the number of MTRs
, data size 𝐷, delay tolerance 𝑇 𝑚𝑎𝑥 and maximum number of cellular

ubchannels 𝜁 𝑐 assigned per MTR. Our network is composed of 200
eer MTs, 4 MECs and MCC, while considering up to 600 MTRs. We
ssume a requester generates multiple tasks with a level of activity
A=0.8, i.e.: an MTR is active 80% of the 200 time slots considered.
e also assume the time slot duration 𝑇s is equal to the maximum

elay tolerance of the tasks, and the assigned computation resources
re reserved and then released on a time slot basis. As presented
n Fig. 6, the number of completed tasks decreases while increasing
he computation data size or decreasing the delay tolerance. When
= 1 Mbit and 𝑇 𝑚𝑎𝑥= 1 s, all the tasks were completed using local

xecution. Decreasing 𝑇 𝑚𝑎𝑥 from 1 to 0.7 and 0.2 s, reduced the number
f completed tasks from 488 to 412 and 30, respectively. For the same
eadline 𝑇 𝑚𝑎𝑥= 1 s, increasing the computation data size from 1 Mbit
o 1.5 Mbits and 2.5 Mbits decreased the number of completed tasks
rom 488 to 67 and 15, respectively. Strict deadlines and large data
14
Fig. 7. Proposed IA approach performance evaluation while varying the number of
MTRs 𝐴, data size 𝐷, delay tolerance 𝑇 𝑚𝑎𝑥 and number of subchannels 𝜁 𝑐 assigned per
MTR.

sizes restrict the number of completed tasks due to the limitation of
radio and computation resources. MTRs need to use more wireless
interfaces to meet the task deadline which becomes more and more
scarce when the number of MTRs increases. For this reason, the number
of completed tasks becomes uniform after reaching system maximum
radio and computation capacity.

In Fig. 7, we focus our performance analysis on a smaller number of
MTRS (up to 50), where resources are not scarce and MTRs can select
more efficient solutions. Increasing 𝜁 𝑐 from 1 to 2, was able to achieve
higher number of completed tasks when 𝐷= 2.5 Mbits and 𝑇 𝑚𝑎𝑥= 0.7 s.
More MTRs can then use two cellular subchannels to complete their
tasks. However, this increase is limited by the available number of
cellular subchannels (𝛺𝑐 = 30), which affects the number of completed
tasks when larger number of MTRs are considered. In the case where
the MTRs are requesting computation demands of 𝐷= 1 Mbits with a
strict deadline of 𝑇 𝑚𝑎𝑥= 0.2 s, allocating two subchannels to MTRs with
bad channel conditions restricted other MTRs with better conditions to
be served. Therefore, due to the limited number of cellular subchannels,
the performance of the IA approach degraded in terms of number of

completed tasks. Moreover, allocating multiple subchannels per MTR
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Fig. 8. Proposed IA approach performance evaluation while varying the weight of the
energy consumption 𝛽.

ncreased the transmission rate, which decreased the energy consump-
ion, and allowed more data to be offloaded to MCC with expensive
harges, which increases the monetary cost as presented in Fig. 7(c).

To evaluate the tradeoff between energy consumption and monetary
ost, we generated results for 100 runs with different MTRs distribution
n Fig. 8 for a network composed of 𝐴= 20 MTRs, 𝐽= 200 MTs, 4 MECs
nd MCC, with 𝐷𝑖= 1.5 Mbits, and 𝑇 𝑚𝑎𝑥= 1 s, while varying 𝛽 the

weight coefficient indicating the impact of minimizing the energy con-
sumption in the utility function adopted in Algorithm 1. As presented
in Fig. 8, increasing 𝛽 reduced the energy consumption and increased
the monetary cost.

7.4. Simulations results outcome

The proposed IA approach provides real-time task offloading deci-
sions including computation and radio resource allocation aiming at
minimizing the energy consumption and monetary cost. The latter is
achieved by simultaneously utilizing the multiple wireless interfaces
available at the MTRs and different offloading models including local
execution, D2D, MEC and MCC offloading. Using partial data task of-
floading to multiple cooperating nodes allowed the proposed approach
to outperform other alternative approaches in terms of maximizing the
total number of completed tasks within the set deadline. Moreover, the
results show that IA scales efficiently well for large real-time networks
with hundreds of MTRs and high computation demands.

8. Conclusions

This paper addressed joint computing, communication and cost-
aware task offloading aiming at maximizing the number of completed
tasks while minimizing energy consumption and monetary cost in D2D-
enabled heterogeneous MEC networks. The proposed solution adopts
partial offloading where a requester offloads different parts of its com-
putation data task simultaneously to multiple MTs, edge servers and
cloud. We formulated the problem as a multi-objective optimization
problem which is shown to be NP-hard. To reduce the time complexity,
we propose hierarchical and iterative allocation approaches to provide
fast sub-optimal solutions for real-time applications. We evaluated the
proposed IA approach under different system parameters. The results
show that the proposed approach outperforms existing approaches in
providing a significant tradeoff between number of completed tasks,
energy consumption, monetary cost and execution time while providing
fast and efficient solutions for large real-time networks with up to 600
MTRs and high computation demands. As future work, the proposed
approaches can be extended to consider subtask dependencies where
15

the result of one subtask is input to a set of other subtasks.
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