
298 IEEE COMMUNICATIONS LETTERS, VOL. 12, NO. 4, APRIL 2008

Distributed Information-Lossless Space-Time Codes for
Amplify-and-Forward TH-UWB Systems
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Abstract— In this paper, we extend the non-orthogonal
amplify-and-forward (NAF) cooperative scheme [1] to the context
of impulse radio ultra-wideband (UWB) systems. In particular,
we consider the problem of distributed Space-Time (ST) coding
with 2-dimensional Pulse Position Modulations (PPM) and Joint
Pulse Position and Amplitude Modulations (PPAM) and we
propose the first known family of full-rate codes that are
information-lossless with these constellations. Being totally-real,
these codes are adapted to the carrier-less nature of the UWB
transmissions and they outperform all previously known totally-
real constructions with any number of relays. With binary
PPM, they satisfy all the construction constraints of the optimal
complex-valued codes proposed in [2] as well as the additional
constraint of being real-valued.

Index Terms— UWB, Space-Time, AF, PAM, PPM.

I. INTRODUCTION

RECENTLY Time-Hopping (TH) UWB WPANs (IEEE
802.15.3) have drawn considerable attention for short

range radio links. On the other hand, cooperation diversity
techniques [1]–[3] can boost the performance of such systems
on which stringent transmission levels were imposed. In this
context, the AF techniques can be appealing for UWB because
of their simplicity (compared to other cooperation techniques).

In particular, the non-orthogonal AF strategy is known to
achieve high performance levels with any number of relays
[1]. Explicit codes that are optimal for the NAF scheme were
proposed in [2]. However, being complex-valued, these codes
are not suitable for low-cost carrier-less UWB transmissions.
The construction techniques of [2] were adapted in [3] for the
construction of totally-real codes for UWB systems based on
cyclic division algebras (CDA). However, CDA-based codes
can not be information-lossless when the construction must
satisfy the additional constraint of being real-valued [3].

In this paper, we take advantage from the particular structure
of the 2-dimensional 2-PPM and 2-PPM-M ′-PAM constella-
tions to construct totally-real information-lossless distributed
ST codes for TH-UWB systems. These full-rate codes can
achieve a full diversity order with any number of relays.
Note that a similar approach was adopted in [3], however,
the constructed codes were specific to constellations having
higher dimensions and are, consequently, not adapted to the
most popular UWB systems that use two modulation positions.

Notations: In is the n×n identity matrix. 0m×n corresponds
to the m × n matrix whose elements are equal to 0. vec(X)
stacks the columns of the matrix X vertically. ⊗ corresponds
to the Kronecker product.
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II. SYSTEM MODEL

Consider the NAF protocol proposed in [1] with K relays.
As in [2], [3], we consider the construction of minimal-delay
codes. In this case, the k-th relay cooperates with the source
during the k-th cooperation period that extends over 4 symbol
durations. During the first half of this period, 2 encoded
symbols are transmitted by the source. During the second
half of this cooperation period, the source and the k-th relay
transmit simultaneously. The source transmits 2 new encoded
symbols while the k-th relay transmits amplified versions of
the symbols that it received during the first half of the k-th
cooperation period.

For TH-UWB systems where the information is modulated
over M positions and M ′ amplitude levels, the decision matrix
at the destination, when the NAF protocol is applied, can be
written as:

Y(2LM×2K) = H(2LM×2KM)C(2KM×2K)+N(2LM×2K) (1)

where the subscripts indicate the corresponding matrices’
dimensions and L is the number of fingers of the Rake
receivers used at the relays and the destination. C is the
distributed ST codeword.

The [(i − 1)LM + (l − 1)M + m, 2(k − 1) + j]-th entry
of the decision matrix Y corresponds to the decision variable
collected at the m-th modulation position of the l-th Rake
finger during the symbol duration [4(k − 1) + 2(i − 1) + j]
for i = 1, 2, j = 1, 2, m = 1, . . . ,M , l = 1, . . . , L and k =
1, . . . , K. N is the noise matrix that has the same structure
as Y . It has a double-sided spectral density of N0/2.

The channel matrix H is written as: H = [H1 · · · HK ]
where Hk is a 2LM×2M matrix given by (for k = 1, . . . ,K):

Hk =
[ √

β1H0 0LM×M√
β1β2ρkλkΣkGkΨkHT

k Hk

√
β2ΣkH0

]
(2)

where βi determines the transmission level during the i-th
half of each cooperation period for i = 1, 2. Normalizing the
transmitted energy is obtained by fixing β1 + 2β2 = 2. ρk is
a path-loss term corresponding to the quality of the channel
between the source and the k-th relay while λk corresponds
to the channel between the k-th relay and the destination. Hk

is a LM ×M matrix that corresponds to the channel between
the source and the k-th relay for k = 1, . . . , K. The ((l −
1)M +m,m′)-th element of Hk corresponds to the impact of
the signal transmitted during the m′-th position on the m-th
correlator placed after the l-th Rake finger for l = 1, . . . , L
and m,m′ = 1, . . . ,M . H0 is the channel matrix between
the source and the destination while Gk is the channel matrix
between the k-th relay and the destination.

In order to avoid excessive channel delay spreads caused
by the UWB channels, maximum ratio combining is applied
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at the relays before amplification and retransmission (this
corresponds to the multiplication by HT

k in eq. (2)). Ψk

and Σk are the amplification and noise-whitening matrices
respectively. They are given by:

Ψk =
[
HT

k Hk

(
β1ρkHT

k Hk + (N0/2)IM

)]− 1
2 (3)

Σk =
[
ILM + β2λkGkΨkHT

k HkΨT
k GT

k

]− 1
2 (4)

III. CODE CONSTRUCTION

Each element of the hybrid M -PPM-M ′-PAM constellation
can be represented by a M -dimensional vector that belongs
to the set:

C={(2m′−1−M ′)em ; m′ = 1 . . . M ′ ; m = 1 . . . M} (5)

where em is the m-th column of IM .
In what follows, we consider 2-dimensional constellations

(M = 2). The most popular modulation schemes for TH-UWB
are binary PPM and bi-orthogonal PPM and they follow as
special cases by setting M ′ = 1 and M ′ = 2 respectively.

From eq. (1), the distributed ST coding scheme is deter-
mined by the codeword C given by:

C = diag (C1 · · · CK) (6)

where the cooperation between the source and the k-th relay
is described by the 2M × 2 matrix Ck. The (m, i)-th (resp.
(M + m, i)-th) entry of Ck corresponds to the amplitude of
the pulse (if any) transmitted by the source (resp. k-th relay)
at the m-th position of the [4(k−1)+2+i]-th symbol duration
for m = 1, . . . ,M = 2 and i = 1, 2. Note that the symbols
transmitted by the relay during the above symbol durations
correspond to amplified versions of the symbols transmitted by
the source during the symbol durations 4(k−1)+1 and 4(k−
1)+2. The codeword C has a block diagonal structure because,
in the NAF protocol, the relays do not transmit simultaneously.

We propose the following structure for the constituent sub-
matrices:

Ck = σk−1 (C0) (7)

C0 =
[

l1 l2
Ωτ(l2) τ(l1)

]
=

[
k1 + φk2 k3 + φk4

Ω(k3 + φ1k4) k1 + φ1k2

]
(8)

where Ω is the 2 × 2 matrix given by:

Ω =
[

0 1
−1 0

]
(9)

Let K = Q(θ) be a K-dimensional real cyclic field
extension of Q and denote its Galois group by Gal(K/Q) =
〈σ〉 (with σK = 1). Then, from eq. (7), the codeword Ck

transmitted by the source and the k-th relay during the second
half of the k-th cooperation period corresponds to the (k−1)-
th conjugate of C0. In eq. (8), k1, . . . , k4 are M -dimensional
vectors given by (M = 2):

ki =
K−1∑
j=0

a(i−1)K+j+1θ
j ∈ KM ; i = 1, . . . , 4 (10)

where a1, . . . , a4K are 2-dimensional vectors that belong to
the 2-PPM-M ′-PAM constellation given in eq. (5).

From eq. (7) and eq. (8), the entries of the codewords belong
to the field L that is a 2-dimensional extension of K: L =

K(φ) where φ = 1+
√

5
2 is the golden number and φ1 = τ(φ) =

1−√
5

2 . The Galois group of L is 〈τ〉 with τ2 = 1.
Since li ∈ LM = QM (θ, φ) for i = 1, 2, then 2K

information symbols can be included in each value of l1 or
l2. In other words, each codeword contains 4K information
symbols resulting in no data rate reductions with respect to
non-cooperative systems since the NAF scheme extends over
4K symbol durations.

Proposition 1: For a cooperative system with K relays,
combining equations (6)-(9) permits to achieve a spatial di-
versity order of K + 1 with 2-PPM-M ′-PAM constellations
for all values of K and M ′.

Proof: Designate by ∆C(X,Y ) the difference between two
codewords C and C ′ that are associated with the information
symbols a1, . . . , a4K and a′

1, . . . , a
′
4K respectively. This ma-

trix can be calculated from:

∆C(X,Y )=diag
[
∆C0(X,Y ) · · · σk−1(∆C0(X,Y ))

]
(11)

where:

∆C0(X,Y ) = C0 − C ′
0 =

[
X Y

Ωτ(Y ) τ(X)

]
(12)

where X and Y correspond to the difference between two
elements of LM . They belong to the set:

A =

{
2K∑
i=1

(ci − c′i)ti ; c1, c
′
1, . . . , c2K , c′2K ∈ C

}
⊂ LM

(13)
where {ti}2K

i=1 = {1, θ, . . . , θK−1, φ, φθ, . . . , φθK−1} and it
forms a basis over Q2K by construction. Consequently, X =
Y = 02×1 if and only if ai = a′

i for i = 1, . . . , 4K. Therefore,
the proposed code is fully diverse if ∆C(X,Y ) has a full rank
for (X,Y ) ∈ A2\{(02×1, 02×1)}. Following from eq. (11),
this can happen only when ∆C0(X,Y ) is rank deficient since
rank[σk−1(∆C0(X,Y ))] = rank[∆C0(X,Y )].

From eq. (12), rank[∆C0(X,Y )] < 2 implies that there
exists a non-zero constant l ∈ L such that: Y = lX and
τ(X) = lΩτ(Y ). Solving these equations, we obtain that X
and Y must verify the equation:

ΩX =
1

NL/K(l)
X (14)

showing that X and Y are eigenvectors of Ω. NL/K(l) �
lτ(l) ∈ K is the algebraic norm of l.

The eigenvalues of the matrix Ω are equal to ±√−1.
Therefore, being real-valued, the non-zero vectors X and Y
can not verify eq. (14). This shows that non-zero vectors X
and Y that result in a rank deficient matrix ∆C0(X,Y ) do not
belong to A given in eq. (13). Since the proof is independent
from M ′, we conclude that the code achieves full diversity for
all values of M ′.

Proposition 2: For binary PPM, combining equations (6)-
(9) permits to achieve the same coding gain as the optimal
complex-valued codes proposed in [2].

Proof: For binary PPM, C = {[1 0]T , [0 1]T } and the
difference between two elements of C belongs to the set
{c[1 −1]T ; c = 0,±1}. Therefore, X and Y can be written
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as X = [x − x]T and Y = [y − y]T where x, y ∈ L. In
this case, eq. (12) takes the following form:

∆C0(X,Y ) =
[

x −x −τ(y) −τ(y)
y −y τ(x) −τ(x)

]T

(15)

This results in the following relation:

det
(
(∆C0)

T ∆C0

)
=

4∑
i=1

4∑
j=i+1

(
det

([
(∆C0,i)

T (∆C0,j)
T
]T

))2

≥
2∑

i=1

4∑
j=3

(
det

([
(∆C0,i)

T (∆C0,j)
T
]T

))2

= 4
((

NL/K(x)
)2

+
(
NL/K(y)

)2
)

(16)

where ∆C0,i is the i-th row of ∆C0. Following from eq.
(11):

det
(
(∆C)T ∆C

) ≥ 4K
((

NL/Q(x)
)2 +

(
NL/Q(y)

)2
)

(17)

Therefore, the minimum non-zero value of eq. (17) is equal
to 4K since NL/Q(x) ∈ Z and NL/Q(y) ∈ Z given that x and
y are constrained to belong to the ring of integers of L.

Proposition 3: The proposed code is information-lossless.
Proof: According to the definition given in [4], the code

is information-lossless if the transmitted encoded multi-
dimensional constellation is a rotated version of the informa-
tion constellation.

Designate by Φ the 4KM × 4KM matrix that verifies the
following relation (M = 2):

vec (C ′) � vec
([

CT
1 · · · CT

K

]T
)

= Φ[aT
1 · · · aT

4K ]T (18)

In other words, C ′ is the vertical concatenation of the
2 × 2 matrices C1, . . . , CK given in eq. (7). In this case,
Φ determines the linear dependence between the encoded
symbols and the information symbols a1, . . . , a4K .

From eq. (7) and eq. (8), it is straight-forward to verify that
the matrix Φ is given by:

Φ =
[

ΦT
1 ΦT

2

]T
(19)

Φi =
[

ΦT
i,0 · · · σK−1(ΦT

i,0)
]T

; i = 1, 2 (20)

Φ1,0 =
[ M φM 0M×KM 0M×KM

0M×KM 0M×KM ΩM φ1ΩM
]
(21)

Φ2,0 =
[

0M×KM 0M×KM M φM
M φ1M 0M×KM 0M×KM

]
(22)

where M is the M × KM matrix given by:

M � M0 ⊗ IM =
[

1 θ · · · θK−1
] ⊗ IM

From [4], the code is information-lossless if Φ is unitary.
Since Ω is unitary, then Φ can be made unitary when the two
basis {θi}K−1

i=0 and {φi}1
i=0 are replaced by new totally-real

orthonormal basis {σi(v)}K−1
i=0 and {τ i(u)}1

i=0. u is given by
u = (3−φ

5 )1/2 while v depends on the number of relays. For
example, with K = 2 relays, v can be chosen as v =

√
3−θ
2

where θ = 1 +
√

2. More details on the construction of these
basis can be found in [3].
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Fig. 1. The proposed modulation-specific code (MSC) vs. the best previously
known totally-real code (BPC) [3] with one relay and 2-PPM-M ′-PAM.

IV. SIMULATIONS AND RESULTS

Simulations are performed over the IEEE 802.15.3a channel
model recommendation CM1 [5]. Fig. 1 compares the pro-
posed modulation-specific code (MSC) with the best previ-
ously known totally-real code (BPC) [3] with one relay and a
5-finger Rake. We fix β1 =β2 and ρ1 =λ1 =1 in eq. (2). While
both families of codes achieve full rate and full diversity, BPC
presents the advantage of having a non-vanishing coding gain
while MSC is information-lossless. For the latter codes, there
is no explicit expression of the coding gain given that the
determinants of the codewords are not integers. We might
imagine that BPC will outperform MSC for large values of M ′

since the coding gain of the former remains constant. However,
the results in Fig. 1 show the superiority of the modulation-
specific codes even at very high spectral efficiencies. Similar
results are obtained for larger numbers of relays.

V. CONCLUSION

We investigated the problem of constructing distributed ST
codes suitable for the NAF strategy with 2-PPM-M ′-PAM
constellations. We presented new totally-real constructions that
are suitable for carrier-less cooperative UWB systems with
any number of relays. These constructions solve the problem
of the nonexistence of information-lossless and totally-real
constructions. They outperform the best known totally-real
distributed ST codes based on cyclic division algebras.
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