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Abstract—The use of vehicular infrastructure to establish
connectivity between isolated stationary Information Relay Sta-
tions is an appealing application of Terrestrial Delay-Tolerant
Networking. A source opportunistically releases data bundles to
vehicles that randomly enter its range. In turn, those vehicles
store the received bundles, carry and deliver them to their
intended destination. It follows that a contemporaneous source-
destination end-to-end path does not exist. Consequently, bundles
experience longer queueing periods at the source. Under such
circumstances, the end-to-end bundle delivery delays become
several orders of magnitude higher than those experienced in
traditional wireless networks. In this context, bundle delivery
delay minimization emerges as a challenging problem that has
not been adequately addressed in the open literature. This paper
proposes a simple Probabilistic Bundle Relay Strategy with Bulk
Bundle Release (PBRS-BBR) that aims at minimizing the average
end-to-end bundle delivery delay while capturing the essence of
vehicular delay-tolerant networking in that it revolves around
minimal network information knowledge. A queueing model
is formulated to represent stationary sources operating under
PBRS-BBR. This model is mathematically analyzed and validated
through extensive simulations that gauge its merit.

I. INTRODUCTION

Nowadays, wireless networks are witnessing several de-
ployments in various extreme environments where they

suffer from different levels of link disruptions depending on
the severity of the operating conditions. The existing Internet
protocols fail to operate properly over such Intermittently
Connected Networks (ICNs), thus raising a variety of new
challenging problems that are attracting the attention of the
networking research community. Delay-Tolerant Networking
emerged as a highly active area of research where networking
experts compete in addressing the various ICN problems, [8]–
[11]. In the open literature, the convention has been to refer
to ICNs as Delay-Tolerant Networks (DTNs).

Vehicular Delay-Tolerant Networks (VDTNs) are a particu-
lar class of DTNs composed of two types of nodes: a) Infor-
mation Relay Stations (IRSs) and b) Mobile nodes. IRSs are
stationary nodes arbitrarily deployed along highways/roads.
Very few of them, called gateways, are privileged by a con-
nection to the Internet or a certain backbone network through
minimal infrastructure. All others are isolated and often way
apart that they cannot directly communicate. Instead, mobile
nodes mounted over vehicles restricted to navigable roadways
serve as opportunistic store-carry-forward devices that connect
any arbitrary IRS pair. Imagine a scenario where three IRSs
are located along the side of a highway. Only the middle IRS is
connected to the Internet. At one end, some end-users deposit
information data at the source S. At the other end, destination
users are located close to D that is far beyond the range of S.
Vehicles with random velocities navigate on the highway/road

in the direction of D and enter the range of S at random time
instants. No inter-vehicle communications may occur. S will
therefore release data bundles to these vehicles, which in turn
will deliver them to D. Obviously, contemporaneous end-to-
end paths between such (S, D) pairs cannot be guaranteed.

In [2] a Probabilistic Bundle Relaying Scheme (PBRS) was
proposed to minimize the bundle transit delay in the context
of the VDTN scenario described above. Under PBRS, the
source S utilized the probability of bundle release Pbr in order
to restrict the release of bundles to only those vehicles that
contribute the most to the minimization of the mean bundle
transit delay. It was shown that PBRS significantly improves
the average bundle transit delay. However, this improvement
was overshadowed by an unexpected tremendous increase in
queueing delays leading to excessive mean end-to-end bundle
delivery delays that rendered PBRS practically inefficient.
Nevertheless, it was observed that the release of a bulk of
bundles whenever the right opportunity arises, is a simple
but yet very effective idea that may boost the performance
of PBRS and render it of exceptional utility.

In this paper, we set up an analytical framework for the
purpose of theoretically evaluating the performance of a source
node S that operates under the rules of the Probabilistic Bundle
Relaying Scheme with Bulk Bundle Release (PBRS-BBR).
Particularly, S is modeled as an M/M/1 queueing system
that may release groups of fixed size bundles, called bundle
bulks, to a subset of the arriving vehicles as determined by
Pbr. Unlike queueing models existing in the open literature,
our probabilistic queueing model does not rely on complete
network information knowledge (e.g. exact vehicle arrival
times, exact vehicle speeds, etc.). It is mathematically studied
and validated through extensive simulations that evaluates its
performance. The rest of this paper is organized as follows. In
section II, we summarize a selection of major related works.
Section III, describes PBRS-BBR’s framework. Section IV
presents a mathematical model to theoretically analyze the
performance of stationary IRSs under PBRS-BBR. Section
V evaluates the benefits of the proposed scheme through a
simulation study. Finally, section VI concludes the paper.

II. RELATED WORKS

In [1] a joint scheduling/delay-minimization problem is
studied in the above-described VDTN context. The authors
solved this problem using Dynamic Programming in a complex
Markov Decision Process framework and proved that it is
sometimes optimal to ignore slow vehicles in present oppor-
tunities and wait for subsequent ones hoping that these latter
will be faster enough to make up for the additional waiting
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time. Unlike [1], PBRS proposed in [2] is designed around
minimal network information knowledge. It utilizes an original
parameter Pbr called the probability of bundle release that
quantifies the contribution of a vehicle in a present opportunity
to the minimization of the mean bundle transit delay. The
performance of PBRS was compared to that of a Greedy Bun-
dle Relaying Scheme (GBRS) counterpart. A mathematical
framework was devised in [3] where the authors derived a
closed-form expression for the probability of bundle release.
In [4], a seminal mathematical study was devised to evaluate
the performance of infrastructure-based vehicular networks in
terms of two important metrics, namely, the access probability
and the connectivity probability. The authors considered both
a single-hop and a two-hop network scenarios and revealed the
trade-offs between key system parameters, such as inter-IRS
distance, vehicular density, nodal communication ranges, and
analyzed their collective impact on both the access probability
and connectivity probability under different communication
channel models. The work in [5] investigates a multi-hop
packet delivery delay in a similar low density VDTN scenario
to the one described earlier. Throughout their analytical study,
the authors account for the randomness of vehicular data traffic
and the statistical variation of the disrupted communication
channel. Using the effective bandwidth theory and the effective
capacity concept, they obtain the maximum inter-IRS distance
that stochastically limits the worst case packet delivery delay
to a certain bound. In [6], the authors formulate a queueing
model to study the performance of mobile routers in VDTNs.
They investigate a scenario where some traffic sources tend
to selfishly confiscate resources (i.e. buffer and bandwidth)
thus severely impacting the performance of the network. The
authors studied this competitive situation by means of a non-
cooperative gaming model.

III. PROBLEM DESCRIPTION AND MOTIVATION

Two simple bundle relaying schemes were investigated in
[2] in the context of the scenario described earlier. Under the
GBRS, the source S greedily releases a single bundle located
at the front of its queue to every arriving vehicle. However,
whenever PBRS is employed, S relies on the probability of
bundle release Pbr in order to opportunistically release front
bundles to those vehicles that are most likely to optimally
contribute to the minimization of the mean bundle transit
delay. It was shown both analytically and through extensive
simulations that, under GBRS and PBRS bundles suffered
excessive queueing delays. Consequently, the mean end-to-
end delivery delay exhibited a significantly rapid growth and
hence rendered both schemes practically inefficient.

Nevertheless, it was observed that, upon the occurrence of a
release opportunity, more than one bundle might be released to
the arriving vehicle. In fact, given the advancement in wireless
technology, today’s wireless nodes utilizing one of the IEEE
802.11 protocol variants are able to transmit data at a rate in
the order of tens of megabits per second while, at the physical
layer, the maximum transfer data unit (MTDU) has a relatively
small size. Consequently, the bundle transmission time is
considerably small as compared to the vehicle dwell time (i.e.

the amount of time a vehicle spends in the range of the source).
It follows that releasing only a single bundle per opportunity
will result in wasting a precious amount of residual vehicle
dwell time during which the source remains idle while bundles
in its queue continue to accumulate. Alternatively, releasing as
many bundles as possible during the entire vehicle dwell time
seems to be a promising and much more efficient approach. A
group of bundles released to an in-range vehicle is referred to
as a bulk of bundles. The size of a bulk is a random variable
whose value is highly dependent on the number of existing
bundles in the source’s buffer and the forwarding capability to
arriving vehicles. Even whenever bundle sizes are assumed to
be fixed to the size of an MTDU, a Bulk Bundle Release
(BBR)-enabled relaying strategy will exhibit a remarkable
efficiency and perform significantly better than its non-BBR
enabled counterpart. This is especially true since the release of
bulks will contribute to the minimization of the mean bundle
queueing delay. Ultimately, knowing that PBRS-BBR also has
the luxury of efficiently releasing those bulks in a way that
minimizes the mean bundle transit delay, it is expected that,
PBRS-BBR will also outperform GBRS-BBR on the end-to-
end delay level. It is therefore the main objective of this
paper to shed the light over this improvement that PBRS-BBR
has over GBRS-BBR and prove it both mathematically and
through simulations as presented in the rest of this paper.

IV. MATHEMATICAL MODELING AND ANALYSIS

A. Basic Assumptions:

The below assumptions are made following the guidelines
and justifications presented in [2], [3] and [1].

1) Incoming bundles follow a Poisson process with param-
eter λ bundles per second.

2) Vehicle arrivals follow a Poisson process with parameter
µv vehicles per second.

3) All bundles have fixed size of Sb bytes.
4) The source node’s transmission rate is TR bps.
5) Vehicle speeds are uniformly distributed in the range

[Vmin;Vmax] meters per second.
6) The speed of a vehicle remains constant during its entire

navigation period on the road/highway.
7) Release decisions are performed independently for each

bulk from one opportunity to another.

B. Model Definition:

Consider the previously described VDTN scenario. Com-
munication is to be established between a source S and a
destination D. The communication range of S covers a distance
C (meters) of the road. Both S and D are located along the
roadside and are separated by a distance dSD � C. Vehicles
with distinct speeds navigate along the road passing by S in
the direction of D as illustrated in Figure 1. We refer to the
event of a vehicle entering the range of S as a vehicle arrival. S
becomes aware of the speed Vi of vehicle i only at the instant
ti of arrival of this latter. As such, it computes its dwell time
Di =

C
Vi

. Note that the maximum dwell time is Dmax = C
Vmin

and the minimum dwell time is Dmin = C
Vmax

. The probability
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Fig. 1. Source-Vehicle communication in a two-hop VDTN.

density function of Di may easily be proven to be given by:

fDi
(t) =

C

(Vmax − Vmin)t2
, for

C

Vmax
≤ t ≤ C

Vmin
(1)

Following assumptions (2) and (3), the bundle transmission
time Tb = 8Sb

TR
. Therefore, knowing Di and Tb, the source S

instantaneously determines Ki = bDi

Tb
c, the maximum number

of bundles that might be released to vehicle i during Di.
The parameter Ki has an upper bound Kmax = bDmax

Tb
c

and a lower bound Kmin = bDmin

Tb
c. Consequently, with

a probability Pbr,i, S immediately starts releasing a bulk to
vehicle i. With a probability 1 − Pbr,i, S retains the bundles
in its queue for a likely better subsequent release opportunity.
Pbr,i has been derived in [3] and is given by:

Pbr,i = e
−µv

(
dSD
Vi
− dSD

Vmax

)
(2)

Furthermore, the average bundle release probability over all
vehicle speeds is also given by (details are found in [3]):

Pbr =
eµv

dSD
Vmax

Vmax − Vmin

∫ Vmax

Vmin

e
−µv

dSD
Vi dVi (3)

Now, the bulk size is a random variable denoted by Bi and
depends on both the number of bundles (N ) queued in S’s
buffer, and Ki. In other words, S cannot release more bundles
than a vehicle can completely receive before it goes out of
range. Also, a vehicle may not carry more bundles than S has
in its queue. Thus, we distinguish between the following cases:
• Case 1: If N = 0, then Bi = 0.
• Case 2: If 0 < N ≤ Ki, then Bi = N .
• Case 3: If N > Ki, then Bi = Ki.

Based on the above observation, it is clear that, on one hand,
vehicle i receives no bundles if S’s buffer is empty and that on
the other hand, S cannot release more than Kmax bundles. The
latter situation occurs whenever S has Kmax or more bundles
but the arriving vehicle has a speed that is as low as Vmin.
Joining the earlier discussions to the analysis of the PBRS in
[3], we conclude that a source operating under PBRS-BBR
is an M/M/1 queueing system with bulk bundle release. It is
therefore of interest to resolve this system and derive closed-
form expressions for its characteristic parameters and most
importantly the number of bundles in the queue as it is directly
related to the size of a departing bulk as well as the bundle
queueing delay.

C. Model Resolution:

Given a known value of Ki, the queuing system under study
is composed of a queue where bundles are buffered and up to
Ki of them might be released. Consequently, if there exists,
in the queue, a number of bundles that is less than or equal to
Ki, then all of these bundles are going to be served and the
queue will become empty. Otherwise, if the queue contains
Ki or more bundles, only Ki of them are going to be served
and all others are going to remain in the queue until the next
round of service and so forth. Taking the number of bundles
in the queue as a state variable, Figure 2 is found to be the
state-transition-rate diagram that represents the behavior of our
system. We denote by Sn (n=0,1,2...) the nth state indicating
that there are exactly n bundles in the queue. Observe that,
in Figure 2, all states except S0 are entered both from their
left-hand neighbor upon the occurrence of a bundle arrival
with a mean rate λ and their Kth

i neighbor to the right upon
the occurrence of a bulk departure with a mean rate µ. These
states are exited upon the occurrence of either an arrival or
a departure. However, state S0 can only be entered from any
one of its immediate right Ki neighbors upon a departure and
exited upon an arrival. To this end, it is important to note that,
under PBRS-BBR, µ is a function of the mean vehicle inter-
arrival time I and the bundle release probability Pbr. As a
matter of fact, on average, up to Ki bundles may be released
with a probability Pbr to a vehicle that arrives within a time
interval of I seconds. Hence, the mean bundle departure rate
is given by µ = Pbr

I
.

Let Pn|Ki
denote the equilibrium probability of finding n

bundles in the system. Therefore, the diagram shown in Figure
2 leads to the following set of equilibrium equations:

λP0|Ki
= µ

Ki∑
i=1

Pi|Ki
, for n = 0 (4)

(λ+ µ)Pn|Ki
= λP(n−1)|Ki

+ µP(n+Ki)|Ki
, for n ≥ 1 (5)

Let Ñ(z|Ki) =

∞∑
n=0

znPn|Ki
denote the p.g.f of the number

of bundles in the queue. Let ρ = λ
µ . Hence, through proper

manipulation of (4) and identification of Ñ(z|Ki) we obtain:

Ñ(z|Ki) =

Ki−1∑
n=0

(zn − zKi)Pn|Ki

ρzKi+1 − (1 + ρ)zKi + 1
(6)

It can be easily shown using Rouche’s Theorem that the
denominator of (6) has Ki + 1 zeros of which exactly one
occurs at z = 1, exactly Ki−1 are such that |z| < 1 and only
one that we denote by z∗(Ki) will be such that |z∗(Ki)| > 1.
It follows from [7] that equation (6) may be reduced to:

Ñ(z|Ki) =
1− 1

z∗(Ki)

1− z
z∗(Ki)

(7)

Inverting (7) leads to the p.m.f of the number of bundles in
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Fig. 2. State-transition-rate diagram representing the behavior of S under PBRS-BBR.

the queue conditioned by Ki = k:

fN |Ki
(n) = Pr[N = n|Ki = k]

=

(
1− 1

z∗(k)

)(
1

z∗(k)

)n
, for n ≥ 0 (8)

Knowing that Kmin ≤ Ki ≤ Kmax, therefore the uncondi-
tional probability mass function of N is given by:

fN (n) =

Kmax∑
k=Kmin

Pr[N = n|Ki = k]·Pr[Ki = k] , for n ≥ 0

Given that Ki = bDi

Tb
c, this means that in order for the

condition Ki = k to be satisfied, it is necessary that kTb ≤
Di ≤ (k + 1)Tb. Consequently, the p.d.f of Ki is given by:

fKi
(k) =

∫ (k+1)Tb

kTb

fDi
(t)dt

=
C

(Vmax − Vmin)(k + 1)kTb
, for Kmin ≤ k ≤ Kmax

(9)

Therefore equation (9) can be rewritten as:

fN (n) =
C

(Vmax − Vmin)Tb
×

Kmax∑
k=Kmin

1

k(k + 1)

(
1− 1

z∗(k)

)(
1

z∗(k)

)n
, for n ≥ 0

(10)

Note, the mean number of bundles in source’s queue is:

N = E[N ] =

∞∑
n=0

n · fN (n) (11)

Let DQ represent the bundle queueing delay. Its mean can be
computed using Little’s Formula as:

DQ = E[DQ] =
N

λ
(12)

According to [3], under PBRS, a single bundle is only released
to the most suitable vehicle (i.e. the vehicle that contributes the
most to the minimization of the mean bundle transit delay).
In other words, from the instant it reaches the front of the
queue, a bundle may witness several vehicles passing by the
source while it keeps waiting until the most suitable vehicle
arrives. Without loss of generality, the same will occur under
PBRS-BBR, but a bulk of bundles B is concerned in this case.
Nevertheless, once released, B will be subject to the same

transit delay that a single released bundle would experience
under PBRS. Let Vc be a random variable that represents the
speed of the vehicle chosen by the source to carry B. Also, let
R denote the event that B is released to an arriving vehicle.
The transit delay experienced by B when released to a vehicle
with speed Vc is given by Td,P = dSD

Vc
. The probability that

an arriving vehicle’s speed is equal to a value v conditioned
by this vehicle being the chosen carrier of B is given by:

Pr
[
Vc = v

∣∣R] = Pr [Vc = v,R]

Pr [R]
(13)

Using Baye’s Theorem, equation (13) is rewritten as:

Pr
[
Vc = v

∣∣R] = Pr
[
R
∣∣Vc = v

]
× Pr [Vc = v]

Pr [R]
(14)

Pr
[
R
∣∣Vc = v

]
= Pbr,c and Pr [R] = Pbr are given in equa-

tions (2) and (3) respectively. In addition, knowing that vehicle
speeds are uniformly distributed in the range [Vmin;Vmax],
Pr [Vc = v] = 1

Vmax−Vmin
. It obviously follows that the p.d.f.

of Vc is given by:

fVc
(v) = Pr

[
Vc = v

∣∣R]
=

e−µv(
dSD

v −
dSD
Vmax )

(Vmax − Vmin) · Pbr
,∀v ∈ [Vmin;Vmax] (15)

Let FVc
(v) and FTd,P

(t) denote the respective c.d.f of Vc and
Td,P . It is easily shown that:

FTd,P
(t) = 1− FVc

(
dSD
t

)
(16)

The Differentiation of both sides of equation (16) leads to the
p.d.f. of Td that is given by:

fTd,P
(t) =

dSDe
−µv

(
t− dSD

Vmax

)
(Vmax − Vmin) · Pbr · t2

,∀t ∈
[
dSD
Vmax

;
dSD
Vmin

]
(17)

As such, the average transit delay Td,P is given by:

Td,P =

∫ dSD
Vmin

dSD
Vmax

fTd
(t)dt

=
dSD

(Vmax − Vmin) · Pbr
eµ

dSD
Vmax×{

ln
(
Vmax
Vmin

)
+

∞∑
m=1

(−µdSD)m

m ·m!
×[(

1

Vmin

)m
−
(

1

Vmax

)m]}
(18)
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Note that the above analysis pertains to the PBRS-BBR
scheme. The analysis pertaining to the queue size and mean
queueing delay under GBRS-BBR is exactly the same. How-
ever, recall that under GBRS-BBR a bulk is released to every
arriving vehicle. As such, Pbr = 1 in this case where we will
have µ = µv . In addition, the transit delay under GBRS-BBR
is not the same as that under PBRS-BBR. In what follows, a
closed form expression is derived for the transit delay under
GBRS-BBR. Let Td,G be a random variable representing the
transit delay experienced by bundles whenever GBRS-BBR
is employed. Under this scheme, a bulk is released to every
arriving vehicle. Hence, following the same approach as in
equations (16) and (17), it can be easily proven that the
probability density function of Td,G is given by:

fTd,G
(t) =

dSD
(Vmax − Vmin)t2

, for
dSD
Vmax

≤ t ≤ dSD
Vmin

(19)

It follows that the average transit delay is given by:

Td,G =

∫ dSD
Vmin

dSD
Vmax

t · fTd,G
(t)dt =

dSD · ln
(
Vmax

Vmin

)
Vmax − Vmin

(20)

V. SIMULATION AND NUMERICAL ANALYSIS

A Java-based discrete event simulator was developed to stuy
and examine the delay improvement achieved by the proposed
PBRS-BBR over PBRS. Whenever GBRS and GBRS-BBR
are considered, their achieved delays serve as benchmarks.
Delay metrics were evaluated for a total of 107 bundles and
averaged out over multiple runs of the simulator to ensure
that a 95% confidence interval is realized. The following
simulation parameter values were assumed:
• The mean vehicle inter-arrival time I ∈ [10; 120] (sec).
• The vehicle speeds are in the range [10; 50] (m/sec).
• The mean bundle inter-arrival time λ = 4 (sec).
• The source-destination distance dSD = 20 (Km).
• The source node transmission rate TR = 1 Mbps.
• The source transmission range C = 200 (m).

Figure 3 presents a theoretical performance evaluation of both
PBRS-BBR and GBRS-BBR in terms of : (i) mean queue size,
(ii) mean queueing delay, (iii) mean transit delay and (iv)
mean end-to-end delay. The theoretical curves of these metrics
are concurrently plotted with their simulated counterparts as
a function of the mean vehicle inter-arrival time. Obviously
Figures 3(a)-3(d) are tangible proofs of the validity of the
mathematical analysis presented in this paper as well as the
accuracy of the developed simulator. This is especially true
since the curves in all of the four plots perfectly overlap with
each other. The rest of the section is devoted to contrasting the
performance of the PBRS-BBR and GBRS-BBR schemes with
that achieved by their respective BBR-disabled counterparts.
Ultimately, the metric of interest is the mean end-to-end bundle
delivery delay (i.e. the overall delay experienced by a bundle
starting from the instant it arrives to the source up until it is
successfully delivered to its destination.). Obviously this delay
is composed of two factors namely: (i) mean queueing delay
and (ii) mean transit delay.

It was already shown in [2] that the queueing delays experi-
enced by bundles under the PBRS and GBRS are excessive as
shown in Figure 4(a), thus, rendering both schemes practically
inefficient. Nonetheless, Figure 4(a) also shows that, indeed,
the BBR extension was able to remarkably reduce the queue-
ing delays by several orders of magnitude. Note that, for clarity
purposes, Figure 4(a) was plotted using a logarithmic scale for
the y-axis. The reason behind this huge improvement is the
fact that, for relatively high bundle arrival rates such as the one
considered in our simulations, the source IRS employing either
PBRS or GBRS easily becomes unstable as, on one hand, it is
subject to very rapid arrivals of bundles that accumulate in its
buffers while, on the other hand, it is not able to drain them as
rapidly due to the fact that vehicle arrivals are relatively more
spaced out in time. The case is even worsened by the fact that,
under this condition, only a single bundle is cleared out at a
time. Hence, the time period during which bundles are queued
will exhibit a considerably large growth. The merit of PBRS-
BBR and GBRS-BBR comes from the fact that they both
benefit from the arriving vehicle’s residence time in the range
of the source in order to clear out as many bundles as possible
from the IRS’s buffer before the vehicle goes out of range.
Hence, this strategy, on average, will significantly reduce the
number of buffered bundles and enhance the stability of the
source IRS’s queue but still, GBRS-BBR outperforms PBRS-
BBR in terms of queueing delay. This logically follows from
the fact that an IRS employing GBRS-BBR clears out bundles
to every arriving vehicle. As such, not as many bundles
will accumulate in its buffer during a single vehicle inter-
arrival period. Under PBRS-BBR, it is often the case that the
source witnesses the arrival of more than one vehicle before
it finally picks up the most suitable one to carry a bulk to the
destination. This extended time interval composed of multiple
vehicle inter-arrival periods is sufficient to increase the delay
experienced by existing bundles in the queue as well as allow
a larger number of newly incoming bundles to accumulate
and experience longer delays. However, it will be shown
below that, on the overall end-to-end delay level, at some
point, PBRS-BBR can easily outperform GBRS-BBR. Turning
attention to transit delay, as stated earlier and illustrated in
Figure 4(b), PBRS-BBR and GBRS-BBR will achieve the
same exact performance as PBRS and GBRS. However, the
probabilistic schemes considerably outperform their greedy
counterparts in this regard. This is due to the fact that the
greedy schemes do not differentiate between fast and slow
vehicles and will release a bulk to every arriving vehicle. In
contrast, the probabilistic schemes are designed to select the
relatively fast vehicles in such a way to achieve the minimum
possible transit delays.

On the end-to-end delay level (i.e. the sum of queueing
and transit delays) it is obvious from Figs. 3(d) and 4(c)
that the BBR schemes significantly outperform PBRS and
GBRS respectively. This directly follows from the queueing
delay improvement realized by the BBR option. Particularly,
Figure 3(d) shows that there exists mean vehicle inter-arrival
time value that constitutes a breakeven point at which both
PBRS-BBR and GBRS-BBR equally perform and then GBRS-
BBR will take over. This finding is quite interesting as it
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(b) Mean Queueing Delay.
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(c) Mean Transit Delay.
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Fig. 3. Theoretical and Simulated evaluation of PBRS-BBR and GBRS-BBR.
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Fig. 4. Delay performance comparison between the four schemes.

sheds the lights on the mechanics of PBRS-BBR and how it
adapts the release of bulks using the Pbr parameter in order to
account for trade-off between the queueing and transit delays.
As a matter of fact, Pbr has a direct impact on the stability
of the IRS queue under PBRS-BBR. Notice that whenever
vehicle inter-arrivals are short, meaning vehicles arrive faster
to the source, as each opportunity arises, there is always an
increased chance that the subsequent opportunity be better. In
other words, Pbr indicates to the source that the next arriving
vehicle might be more likely to have a higher speed and
achieve a lower transit delay. Consequently, the source will
retain the bundles in the queue until the next opportunity
arises. It is true that this will cause the queueing delays of
those bundles to increase, however, it will not take long for
a sufficiently fast vehicle to arrive. It is also true that, until
then, more bundles may accumulate. However, the number of
extra accumulating bundles is relatively small and thanks to
the advances in wireless technology (e.g. IEEE 802.11p) and
the fast transmission rates they make possible, the source will
be able to fully drain all bundles in its buffer in a single bulk
to the fast arriving vehicle. As such the buffer will become
empty. Under such circumstances, the IRS is highly stable and
the experienced queueing delay in this case, even if larger than
the one under GBRS-BBR, can be easily overshadowed by the
improvement on the transit delay that PBRS-BBR incurs. As
a result, PBRS-BBR outperforms GBRS-BBR. Nevertheless,
as vehicle arrivals become more and more spaced out in time,
the improved transit delay, eventhough optimal, will no longer
be able to compensate for the increased queueing delays. As
such GBRS-BBR will take over.

VI. CONCLUSION

A Bulk Bundle Release (BBR) extension for the Probabilis-
tic Bundle Relaying Scheme (PBRS) and its greedy counter
part (GBRS) is proposed in this paper. The mechanics of

the PBRS-BBR and GBRS-BBR are similar to their BBR-
disabled versions except that bulks of bundles are released per
opportunity. A mathematical framework is setup for studying
the performance of both PBRS-BBR and GBRS-BBR. An
M/M/1 queueing model with bulk bundle departures was
proposed to characterize source IRSs employing either of
the BBR-enabled schemes. The model was verified through
extensive simulations. The reported results show that PBRS-
BBR significantly outperforms GBRS-BBR in terms of the
mean end-to-end delay whenever the IRS queue is stable.
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