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Abstract—In this paper, we consider the problem of Space-
Time (ST) coding with Pulse Position Modulation (PPM). While
all the existing ST block codes necessitate rotating the phase or
amplifying the amplitude of the transmitted symbols, the pro-
posed scheme can be associated with unipolar PPM constellations
without introducing any additional constellation extension. In
other words, full transmit diversity can be achieved while convey-
ing the information only through the time delays of the modulated
signals transmitted from the different antennas. The absence of
phase rotations renders the proposed scheme convenient for low-
cost carrier-less Multiple-Input-Multiple-Output (MIMO) Time-
Hopping Ultra-WideBand (TH-UWB) systems and for MIMO
Free-Space Optical (FSO) communications with direct detection.
In particular, we propose two families of minimal-delay ST block
codes that achieve a full transmit diversity order with PPM.
Designate by n the number of transmit antennas and by M
the number of modulation positions. For a given set of values
of (n, m), the first family of codes achieves a rate of 1 symbol
per channel use (PCU) which is the highest possible achievable
rate when no constellation extensions are introduced. The second
family of codes can be applied with a wider range of (n, m) at
the expense of a reduced rate given by: R = 1

n
+ n−1

n
log2(M−1)
log2(M)

.

Index Terms—Multiple-Input-Multiple-Output (MIMO),
Ultra-WideBand (UWB), Free-Space Optical (FSO)
communications, Space-Time (ST) coding, Pulse Position
Modulation (PPM).

I. INTRODUCTION

THERE is a growing interest in applying Space-Time
(ST) coding techniques on Impulse Radio Time-Hopping

Ultra-WideBand (IR-TH-UWB) [1]–[5]. In the same way,
recent studies showed that ST coding can be a possible
solution for solving the ‘last mile’ problem using Free-
Space-Optical (FSO) links since spatial diversity can combat
the atmospheric turbulence that degrades the performance of
such systems [6]–[8]. In this context, Multiple-Input-Multiple-
Output (MIMO) techniques can be extended to FSO systems
where the transmitter is equipped with a laser array and the
receiver is equipped with multiple photodetectors.
Pulse Position Modulation (PPM) is a very popular mod-

ulation scheme for low-cost TH-UWB where it is difficult
to control the phase and amplitude of the very low duty-
cycle sub-nanosecond pulses used to convey the information
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symbols. In the same way, transmitting unipolar signals is
crucial for FSO communications with direct detection where
the information can only be conveyed by the presence or
absence of the light pulses. For TH-UWB and FSO systems,
the extension of the existing single-antenna solutions to the
multi-antenna scenarios is feasible only if the ST code applied
at the transmitter side necessitates controlling only the time
delay of each transmitted pulse (without controlling its phase
or amplitude). In this context, combining the power-efficient
MIMO techniques with the power-efficient PPM constellations
is of substantial importance for the low power consumption
UWB systems. On the other hand, the bandwidth efficiency
is not a key concern in UWB systems. However, designing
MIMO systems transmitting PPM pulses that occupy the same
bandwidth results in simple mono-band transceivers that have
a much simpler structure compared to the alternate multi-band
UWB solution.
While a huge amount of work considered the problem

of ST coding with QAM, PAM and PSK [9]–[13], the ST
code design with PPM remains a research domain that is
not much explored. It can be easily shown that the codes
proposed in [9]–[13] for QAM, PAM and PSK can achieve full
transmit diversity when associated with PPM. However, the
disadvantage of such an approach is an additional constellation
extension that results from the phase rotations or ampli-
tude amplifications introduced by all the existing ST coding
schemes. These codes will fail in achieving full transmit
diversity if these additional modifications are not introduced.
Consider for example the orthogonal ST codes proposed in
[9], [10]. In this case, the entries of the n × n codewords
(where n is the number of transmit antennas) can be equal
to either ±si or ±s∗i where s1, . . . , sn are the QAM symbols
and x∗ stands for the complex conjugate of x. The orthogonal
codes do not introduce any constellation extension with this
modulation since s∗ and −s are both QAM symbols whenever
s is a QAM symbol. This property will be referred to as the
shape preserving constraint in what follows.
Consider a M -ary PPM constellation. This is a M -

dimensional constellation where the information symbols are
represented by M -dimensional vectors belonging to the set:

C = {em ; m = 1, . . . , M} (1)

where em is the m-th column of the M × M identity matrix
IM . The orthogonal codes are not shape preserving with M -
PPM since s and −s can never belong to the signal set given
in eq. (1) simultaneously.
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In the same way, consider the rate-1 minimal-delay codes
proposed in [11] where the codewords are given by:

C (s1, . . . , sn) =

⎡
⎢⎢⎢⎢⎣

s1 s2 · · · sn

γsn s1
. . .

...
...

. . .
. . . s2

γs2 · · · γsn s1

⎤
⎥⎥⎥⎥⎦ (2)

where s1, . . . , sn are PSK symbols. Multiplying the lower
triangular part of the codeword in eq. (2) by γ permits to
achieve full transmit diversity. Moreover, this code becomes
shape preserving when γ is chosen such that γs is a M -ary
PSK symbol whenever s is a M -ary PSK symbol for a certain
value of M . The only value of γ that is shape preserving with
PPM is γ = 1. However, this value of γ fails to assure a full
transmit diversity order (refer to [11]). The same argument
applies to the diversity schemes proposed in [1] for TH-UWB
and that are not shape preserving with PPM.
To the authors’ best knowledge, the main contribution in

ST code design for PPM can be found in [6] where a shape-
preserving ST code was proposed for binary PPM with n = 2
emitting lasers (or transmit antennas). For binary PPM, this
code is shape preserving because of the structure of this
constellation that is composed of a signal and its compliment
defined as the signal obtained by reversing the roles of “on”
and “off” [6]. This code was extended to systems with n = 4
emitting lasers with On-Off Keying (OOK) and binary PPM
in [7]. However, the codes given in [6], [7] are based on the
orthogonal design [9], [10] and hence can not be applied with
any number of sources (transmit antennas or lasers). Another
main disadvantage is that these codes are exclusive to binary
PPM and can not be extended to M -ary PPM with M > 2
without introducing a constellation extension (even though this
extension does not result from phase rotations or amplitude
amplifications [6]).
Compared with the time-switched transmit diversity

schemes considered in [5], the proposed schemes can be
applied even when the number of pulses used to transmit
one information symbol is less than the number of transmit
antennas. This renders the proposed schemes suitable for very
high data-rate UWB systems that employ few (or no) pulse
repetitions. In the same way, the schemes proposed in [5] are
not suitable for FSO systems where no pulse repetitions are
used. On the other hand, it can be seen that the proposed
schemes and those proposed in [5] and [6] coincide in the
special case of binary PPM with two transmit antennas.
In this work, instead of adopting the classical approach of

constructing ST codes over infinite fields, we profit from the
particular structure of the PPM constellation given in eq. (1) to
construct new coding schemes that are shape-preserving with
PPM. In particular, we propose two new families of ST codes
for MIMO TH-UWB and MIMO FSO systems with M -ary
PPM. For both families of codes, and for systems equipped
with n transmit antennas, we determine the set of values of
M for which the proposed ST codes are fully diverse with M -
PPM. For example, the first family of rate-1 codes achieves
full transmit diversity for {M ≥ 2}, {M = 3, M ≥ 5},
{M = 2, M ≥ 4} and {M = 5, 7, M ≥ 9} with n = 2, 3, 4, 5
transmit antennas respectively. The second family of codes

achieves full transmit diversity for {M ≥ 2}, {M ≥ 3},
{M ≥ 3} and {M ≥ 7} with n = 2, 3, 4, 5 transmit
antennas respectively. However, in this case, enlarging the sets
of validity of M comes at the expense of a reduction in the
achievable data rates. In particular, the second family of codes
transmits at the normalized rate R = 1

n + n−1
n

log2(M−1)
log2(M) < 1.

The rest of the paper is organized as follows. In section
II, we present the system model of MIMO TH-UWB systems
and MIMO FSO systems. The two families of PPM-specific
ST codes are presented in section III. Simulations over realistic
indoor UWB channels and turbulent atmospheric links are
represented in section IV while section V concludes.
Notations: 0m×n stands for the m × n matrix whose

components are all equal to zero. 0M stands for the M -
dimensional all-zero vector. IM is the M ×M identity matrix
and ⊗ stands for the Kronecker product.Q is the set of rational
numbers.

II. SYSTEM MODEL

The system model that we present corresponds to a multi-
antenna TH-UWB system with P transmit antennas, Q re-
ceive antennas and a Rake equipped with L fingers. For M -
dimensional constellations, the linear dependence between the
baseband inputs and outputs of the channel can be expressed
as:

X = HC + N (3)

where C is the PM ×T codeword whose ((p−1)M +m, t)-
th entry corresponds to the amplitude of the pulse (if any)
transmitted at the m-th position of the p-th antenna during
the t-th symbol duration for p = 1, . . . , P , m = 1, . . . , M and
t = 1, . . . , T . The matrices X and N are QLM ×T matrices
corresponding to the decision variables and the additive white
Gaussian noise terms respectively.

H is the QLM × PM channel matrix given by H =
[HT

1 · · ·HT
Q]T whereHq = [HT

q,1 · · ·HT
q,L]T for q = 1, . . . , Q.

The matrix Hq,l is given by Hq,l = [Hq,l,1 · · ·Hq,l,P ] for
l = 1, . . . , L. Hq,l,p is a M × M matrix for p = 1, . . . , P .
The (m, m′)-th element of Hq,l,p corresponds to the impact
of the signal transmitted during the m′-th position of the p-
th antenna on the m-th correlator (corresponding to the m-th
position) placed after the l-th Rake finger of the q-th receive
antenna. The (m, m′)-th element of Hq,l,p is given by [2]:

Hq,l,p(m, m′) = hq,p((m − m′)δ + Δl) (4)

where δ stands for the modulation delay and Δl for the l-
th finger delay. In what follows, we consider a Rake that
combines the first arriving multi-path components and we
fix Δl = (l−1)MTw where Tw stands for the duration of
the UWB pulse (with δ ≥ Tw). Designate by gq,p(t) the
convolution of the pulse waveform w(t) with the impulse
response of the frequency selective channel between antennas
p and q. In this case, hq,p(τ) =

∫ Tf

0
gq,p(t)w(t − τ)dt where

Tf stands for the average separation between two consecutive
pulses.
Note that the impact of the interference between the

different modulation positions is included in eq. (3). This
interference is present when δ < Γ where Γ stands for the
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channel delay spread (Γ >> Tw). In the absence of Inter-
Position-Interference (IPI), eq. (4) becomes:

Hq,l,p(m, m′) = hq,p(Δl)δ(m − m′) (5)

where δ(.) stands for Dirac’s delta function.
The previous model can be easily extended to MIMO FSO

communications in a shot-noise limited scenario obtained
at high signal-to-noise ratios (SNR) (refer to [6] and the
references therein). We suppose that the channel is flat and
P now stands for the number of laser sources at the transmit
array and Q stands for the number of photodetectors at the
receiver side. Equation (3) can be readily applied where the
codeword C keeps the same structure as before but now X
and N are (QM × T )-dimensional matrices. In other words,
L = 1 since the channel is flat and no multi-path combining
techniques are applied at the receiver.
For FSO systems, H is the QM × PM channel matrix

whose (q, p)-th M × M constituent sub-matrix is denoted by
Hq,p for p = 1, . . . , P and q = 1, . . . , Q. The (m, m′)-th
element of Hq,p corresponds to the contribution, of the signal
transmitted during the m′-th position of the p-th source, that
results when the waveform received at the q-th detector is
projected onto the m-th basis vector for m, m′ = 1, . . . , M .
In the absence of IPI, Hq,p = hq,p ⊗ IM where hq,p stands
for the scintillation at the optical path between the p-th source
and the q-th detector.
In what follows, and for the sake of simplicity, the term

transmit antennas will be used to refer to elements of both the
UWB transmit array and the FSO laser array. In the same way,
elements of the receive antenna array and the photodetector
array will be referred to as receive antennas.

III. CODES CONSTRUCTIONS

A. Rate-1 Codes

For M -PPM with n = P transmit antennas, the minimal-
delay codewords are represented by the matrices of dimensions
nM × n having the following structure:

C (s1, . . . , sn) =

⎡
⎢⎢⎢⎢⎣

s1 s2 · · · sn

Ωsn s1
. . .

...
...

. . .
. . . s2

Ωs2 · · · Ωsn s1

⎤
⎥⎥⎥⎥⎦ (6)

where s1, . . . , sn ∈ C given in eq. (1) are the M -dimensional
vector representations of the information symbols. Ω is a M×
M cyclic permutation matrix given by:

Ω =
[

01×(M−1) 1
IM−1 0(M−1)×1

]
(7)

Evidently, Ωs ∈ C given in eq. (1) whenever s ∈ C and the
code is shape preserving with PPM.
Denote by A the set of all possible differences between two

information vectors:

A = {s − s′ ; s, s′ ∈ C} (8)

The proposed code is fully diverse if the matrix
C(a1, . . . , an) has a full rank for (a1, . . . , an) ∈
An\{(0M , . . . , 0M )} [14]. In other words, the code is fully

diverse for given values of M and n if all the non-zero M -
dimensional vectors that result in a rank-deficient matrix C do
not belong to the set A given in eq. (8). Following from eq.
(8), elements of A can have a maximum number of two non-
zero components. Moreover, one of these components must be
equal to +1 while the other component must be equal to −1.
The transmit diversity is achieved because of this particular
structure of A. For example, the matrix C(a1, . . . , an) does
not have a full rank when a1, . . . , an have all their components
equal to 1. However, these vectors do not belong to the set A
for all values of M .
In order to have more insights on the properties of the

proposed code, we first consider the special case of n = 2:

C (s1, s2) =
[

s1 s2

Ωs2 s1

]
(9)

¿From eq. (9), rank(C(a1, a2)) < 2 if C2 = kC1 where Ci

stands for the i-th column of C and k is a non-zero integer.
Given that the components of the elements of A can be equal
to {0,±1}, then k must be equal to ±1. Moreover, C2 =
kC1 implies that a2 = ka1 and a1 = kΩa2 implying that
a2 = k2Ωa2 = Ωa2. This implies that a2 is an eigenvector
of Ω associated with the eigenvalue k2 = 1. Following from
the structure of Ω given in eq. (7), all the components of this
eigenvector must be equal to each other. On the other hand,
the only vector of A having equal components is the all-zero
vector and consequently a2 = 0M implying that a1 = 0M for
all values of M . Therefore, the only rank-deficient matrix is
the all-zero 2M × 2 matrix and the proposed code is fully
diverse with n = 2 transmit antennas for all values of M ≥ 2.
Note that for the special case of n = 2, the code given in

eq. (9) is equivalent to the code proposed in [6]. However, by
writing the codewords and system model in convenient matrix
forms, we proved that eq. (9) can be applied with M -ary PPM
without introducing a constellation extension for all values of
M (rather than simply M = 2 as indicated in [6]).
We now consider the case n > 2. In what follows, for

notational simplicity, C(a1, . . . , an) will be referred to as C
when there is no ambiguity. The codeword C (associated with
n elements of A) is rank-deficient if there exits n−1 rational
numbers k1, . . . , kn−1 such that:

Cn =
n−1∑
i=1

kiCi (10)

After some manipulations and following from eq. (6), eq.
(10) implies that:

[C(−1, k1, . . . , kn−1)]
T [aT

n · · · aT
1

]T
= 0M (11)

where in the last equation Ω and ai for i = 1, . . . , n are
considered as parameters (rather than a M × M matrix and
M -dimensional vectors belonging to A respectively).
Equation (11) is verified if:

det (R) ai = 0M ; i = 1, . . . , n (12)

where R = [C(−1, k1, . . . , kn−1)]
T and when calculating the

determinant in eq. (12), R is considered as a n×n matrix. In
this case, ai ∈ A for i = 1, . . . , n.
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Since Ω is contained only in the upper triangular part of R,
then det(R) is a polynomial of degree n− 1 in Ω. Therefore,
the linear dependance between the columns of the codeword
implies the following relation:(

n−1∑
i=0

λiΩi

)
ai = 0M ; i = 1, . . . , n (13)

Following from the structure of R, it can be easily shown
that λ0 = 1 and λn−1 = −(k1)n for all values of n. In
what follows, we limit ourselves to the case M ≥ n. For
convenience, eq. (13) will be written as:

MX = 0M ; X = a1, . . . , an (14)

M =
M−1∑
i=0

λiΩi ; λi = 0 for i = n, . . . , M − 1 (15)

Being a function of the rational numbers k1, . . . , kn−1, then
λi is a rational number for all values of i.
For a given value of n > 2, the proposed code is fully

diverse with M -PPM if M verifies at least one of the three
propositions stated in what follows.
Proposition 1: The proposed code is fully diverse for the

values of M verifying ϕ(M) ≥ n where ϕ(.) stands for
Euler’s totient function.
Proof : The proof is provided in Appendix A.
Proposition 2: The proposed code permits to achieve full

transmit diversity for:

1) n ≤ M − d(M) if M is odd or if M is a multiple of 4.
2) n ≤ M − d(M) + 1 if M is an even number that is not
a multiple of 4.

where d(M) stands for the biggest integer divisor of M in the
set {1, . . . , M − 1}. For example, when M is even d(M) =
M/2 and the two conditions of proposition 2 imply that the
code is fully diverse for M ≥ 2n (resp. M ≥ 2n − 1) when
M is a multiple (resp. not multiple) of 4. For prime numbers,
the first condition implies that the code is fully diverse for
M ≥ n + 1.
Proof : The proof of proposition 2 is provided in Appendix B.
Proposition 3: For prime values of M , the proposed code

is fully diverse for n = M .
Proof : The proof is provided in Appendix C.
Note that the above propositions follow from the structure

of the matrix M in eq. (15) and from the values taken
by λ0 and λn−1. The provided proofs do not take into
consideration the specific values taken by λ1, . . . , λn−2. These
variables correspond to linear combinations of ki1

1 · · · kin−1
n−1 for

i1, . . . , in−1 ∈ {0, . . . , n} and, consequently, their expressions
become intractable for large values of n.
For the sake of completeness and without discussing the

feasibility of an analysis that is based on λ1, . . . , λn−2, we
can state that the set of values of M respecting at least one
of the three preceding propositions constitutes a subset of the
set of values of M for which full transmit diversity can be
achieved.
Based on the above three propositions and on the analysis

presented for n = 2, full transmit diversity can be achieved
for S2 = {M ≥ 2}, S3 = {M = 3, M ≥ 5}, S4 = {M ≥ 5},
S5 = {M = 5, 7, M ≥ 9} and S6 = {M = 7, M ≥ 9}

for practical systems having n = 2, . . . , 6 transmit antennas
respectively. On the other hand, a numerical evaluation (that
is feasible only for small values of M and n) shows that the
proposed code is fully diverse with the additional sets S′

4 =
{2, 4} and S′

6 = {3} for n = 4 and n = 6 respectively. In
the same way, the numerical analysis shows that full transmit
diversity is lost for (n, M) ∈ {(3, 2), (3, 4), (4, 3), (5, M ≤
4), (6, 2), (6, 4), (6, 5)}.
As a conclusion, the rate-1 shape-preserving codes are fully

diverse withM -PPM for the values ofM belonging to the sets
S2, S3 and S4 ∪ S′

4 for n = 2, 3, 4 respectively. On the other
hand, the sets S5 and S6 ∪S′

6 constitute subsets of the sets of
values of M for which full transmit diversity is achieved for
n = 5 and n = 6 respectively.

B. Reduced-Rate Codes

ForM -PPM with n transmit antennas, the codewords of the
second family of codes will have the same structure as that
given in eq. (6) but now the M × M permutation matrix Ω
given in eq. (7) will be replaced by:

Ω =
[

01×(M−1) −1
IM−1 0(M−1)×1

]
(16)

Because the (1, M)-th element of Ω is equal to −1, a
polarity inversion will be introduced (on the pulse occupying
theM -th position) when s1, . . . , sn ∈ C given in eq. (1). From
eq. (6), it can be seen that Ω multiplies only the symbols
s2, . . . , sn. Therefore, in order to obtain an encoding scheme
that transmits unipolar pulses uniquely, s2, . . . , sn are not
allowed to occupy the M -th modulation position.
In other words, the second family of shape preserving codes

is obtained by associating eq. (6) and eq. (16) with the symbols
s1 ∈ C and s2, . . . , sn ∈ C′ where C′ is defined as:

C′ = {em ; m = 1, . . . , M − 1} (17)

Evidently, limiting the values of s2, . . . , sn in C′ rather
than C results in a reduced rate. The normalized bit rate with
respect to single-antenna systems whose transmitted pulses
can occupy M positions is given by:

R =
log2(M) + (n − 1) log2(M − 1)

n log2(M)
(18)

Evidently, R ≤ 1 and R is an increasing function of M
and a decreasing function of n. Consequently, the second
family of codes is particularly appealing for high order PPM
constellations with practical systems having a limited number
of antennas per antenna array. For example, for 8-PPM with
two transmit antennas, R � 0.95 and the data rate reduction
(introduced by the shaping constraint) is negligible.
Given that C′ ⊂ C, we will next find the set of values of

(n, M) for which this second family of codes is fully diverse
for s1, . . . , sn ∈ C. Given that the codewords of the two
families of codes have the same structure (only the value of
Ω is changing), then equations (10)-(15) will hold.
Proposition 4: For a system equipped with n transmit an-

tennas, the second family of codes permits to achieve a full
transmit diversity order with M -PPM for:

n ≤ M − d(M) (19)
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TABLE I
NORMALIZED RATES ACHIEVED BY THE PROPOSED CODES

M = 2 M = 3 M = 4 M = 5 M = 6 M = 7 M = 8 M = 9 M = 10 M = 11 M = 12

n = 2 1 1 1 1 1 1 1 1 1 1 1
n = 3 − 1 0.8617 1 1 1 1 1 1 1 1
n = 4 − − 0.8444 1 1 1 1 1 1 1 1
n = 5 − − − 1 − 1 0.9486 1 1 1 1
n = 6 − − − − − 1 0.9465 1 1 1 1
n = 7 − − − − − 1 0.9450 − 0.9608 1 0.97
n = 8 − − − − − − 0.9438 − 0.96 1 0.9694

where d(M) = 0 when M = 2j and j is a non-zero natural
integer. When M is not a power of 2, d(M) stands for
the biggest integer divisor of M in the set {1, . . . , M − 1}
verifying the condition that M

d(M) is odd.
Proof : The proof is provided in Appendix D.
For example, when M = 6, d(M) = 2 and proposition 4

implies that the code is fully diverse for n ∈ {2, 3, 4}. For
prime numbers, proposition 4 implies that the code is fully
diverse for M ≥ n + 1. Based on the above proposition, full
transmit diversity can be achieved with M -PPM for S2 =
{M ≥ 2}, S3 = {M ≥ 3}, S4 = {M ≥ 3}, S5 = {M ≥
7} and S6 = {M ≥ 7} for n = 2, . . . , 6 transmit antennas
respectively.
If both families of codes are fully diverse for a ceratin value

of (n, M), it is more convenient to apply the first family
of codes that achieves a higher rate. Table-1 shows the set
of values of (n, M) for which the proposed codes can be
applied. The achievable normalized rate (R) is also shown. In
Table-1, R = 1 implies that the first family of codes must be
applied while R < 1 implies that the second family of codes
must be applied (because the first family of codes will not be
fully diverse in this case). In Table-1, when no value of R is
given, this indicates that neither one of the above codes can
be applied.

C. Coding Gain

Proposition 5: The coding gain of both families of codes
with n sources and M -PPM is equal to 2 for all values of n
and M .
Proof : The proof is provided in Appendix E.
Finally, note that propositions 1-5 will still hold if the

columns and (or) rows of the matrix Ω given in eq. (7) or
eq. (16) are permuted among each other. In other words, the
properties of the rate-1 codes (diversity order and coding gain)
remain invariant with an arbitrary permutation matrix while
the properties of the reduced-rate codes remain invariant with
any permutation matrix introducing one sign inversion.

IV. SIMULATIONS AND RESULTS

We first show the performance of IR-UWB over the IEEE
802.15.3a channel model recommendation CM2 that corre-
sponds to non-line-of-sight (NLOS) conditions [15]. The an-
tenna arrays are supposed to be sufficiently spaced so that the
PQ sub-channels can be generated independently. A Gaussian
pulse with a duration of Tw = 0.5 ns is used. In order to
eliminate the inter symbol interference, the symbol duration
is set to 100 ns which is larger than the channel delay spread.
The modulation delay is chosen to verify δ = Tw = 0.5 ns

resulting in IPI between the different modulation positions. At
the receiver side, perfect channel state information is assumed.
A modified version of the sphere decoder is applied [16].
This assures that the output of the decoder corresponds to
the closest point of the multi-dimensional PPM constellation
(and not simply to the closest lattice point). Note that no
reference to the TH sequence or to the number of pulses per
symbol was made since these parameters have no impact on
the performance in a single user scenario. Moreover, all the
transmit antennas of the same user are supposed to share the
same TH sequence.

Fig. 1 compares the performance of single-antenna IR-
UWB systems with that of MIMO UWB systems using coding
scheme 1 with three transmit antennas. Fig. 2 shows the perfor-
mance gains that result from applying the first family of codes
with 5-PPM when increasing the number of transmit antennas.
In both cases, the receiver consists of one antenna with a 5-
finger Rake. Results show the enhanced diversity order and
the high performance levels achieved by the proposed rate-1
coding scheme.

Fig. 3 shows the performance of the second family of codes
with 4-PPM, 3 transmit antennas, 1 receive antenna and a L-
finger Rake for L = 1, 20. For 4-PPM, MIMO-UWB must
be associated with the second family of codes since the first
family of codes (having a higher rate) is not fully diverse
with this constellation. Results show that, despite the induced
rate losses, applying the proposed coding scheme results in
important performance gains even with systems that profit
from a high multi-path diversity order (L = 20). Therefore,
applying the MIMO techniques can be beneficial in increasing
the communication ranges of TH-UWB systems.

To highlight the advantages of ST coding with UWB
systems, Fig. 4 compares 1× 1 and 2× 1 systems having the
same overall diversity that is given by PQL. In this simulation
setup, 2-PPM is used with Q = 1 receive antenna. The product
PQL takes the values of 5, 10 and 20 respectively. Results
show that exploiting multi-path diversity by increasing the
number of Rake fingers is more beneficial at low SNRs. In
this case, performance is dominated by noise and the energy
capture is enhanced by high-order Rakes resulting in better
performance. For high SNRs, performance is dominated by
fading and transmit diversity becomes more beneficial even
though it does not increase the energy capture. This follows
from the fact that consecutive multi-path components of the
same sub-channel can be simultaneously faded because of
cluster and channel shadowing [15]. In all cases, the proposed
ST codes result in high performance levels even with low-
order Rakes. In other words, they can shift the complexity
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Fig. 1. Performance of the rate-1 code with 3 transmit antennas and M -PPM
for M = 3, 6, 8. One receive antenna and a 5-finger Rake are used.
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Fig. 2. Performance of the rate-1 code with n transmit antennas and 5-PPM
for n = 2, . . . , 5. One receive antenna and a 5-finger Rake are used.

from the receiver side to the transmitter side. Further com-
ments on the utility of spatial diversity with UWB can be
found in [17].
Given the very short duration of the transmitted UWB

pulses, the differences in the propagation delays of the dif-
ferent sub-channels can be comparable to the pulse-width.
To show the impact of having different channel delays, we
performed simulations over the space-variant UWB channel
model proposed in [18] since the relative delays between the
elements of the antenna arrays are provided by this model.
Fig. 5 shows the performance of the first family of codes
over profile 3 that corresponds to an “office-to-office” scenario
in the case where the elements of the transmit and receive
antenna arrays are separated by 10 cm. 3-PPM modulations are
used and the receiver is equipped with a 1-finger Rake. Results
show that different propagation delays result in a performance
loss with respect to the case where the first arriving multi-
path components of the different sub-channels are aligned.
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Fig. 3. Performance of single-antenna systems and 3× 1 ST-coded systems
using the second family of codes with 4-PPM.
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Fig. 4. Transmit diversity versus multi-path diversity over CM2 with 2-PPM.

However, this performance loss is not associated with any
degradation in the diversity order and the same diversity
advantage is obtained in both cases.

Next, we study the performance of MIMO FSO systems.
In this case, flat fading channels are considered (no IPI)
and, as in [7], the channel irradiances are drawn from an
exponential distribution whose mean is equal to 1. Fig. 6
compares the performance of 1 × 1 FSO systems with ST
coded MIMO FSO systems when M -PPM constellations are
used where M = 4. For n = 2 emitting lasers, (n, M)
verifies proposition 1 and the rate-1 code can be applied (note
that in this case proposition 2 is also verified). For n = 3,
proposition 4 is verified while neither one of propositions 1-3
holds. Consequently, the second family of codes is used to
encode the 3×1 and 3×3 FSO systems in Fig. 6. The slopes
of the error curves show that FSO links suffer from severe
fading. Consequently, the enhanced diversity orders offered
by the proposed schemes can be very useful for these links.
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Fig. 5. Performance of TH-UWB systems over the Kunisch-Pamp channel
model (profile 3) using 3-PPM and a 1-finger Rake. The separation between
the elements of the transmit and receive arrays is equal to 10 cm.

V. CONCLUSION

We investigated the problem of constructing ST coding
schemes that are suitable for MIMO IR-UWB systems and
MIMO FSO systems using unipolar PPM. We proposed the
first known families of ST block codes that verify the shape-
preserving constraint with PPM for any number of transmit
antennas (or laser sources) and for a wide range of the
dimensionality of the transmitted constellation. For TH-UWB
systems, the proposed solutions are appealing since the ex-
tension of the existing single-antenna systems to the multi-
antenna scenarios will not necessitate additional constraints on
the RF circuitry to control the phase or the amplitude of the
very low duty cycle sub-nanosecond pulses. For MIMO FSO
communications with direct detection, an enhanced transmit
diversity order can be achieved with several lasers switching
between the “on” and “off” modes.

APPENDIX A

From eq. (15),M is a circulant matrix that can be expressed
as: M =

∑M
i=1 λiΩi with λM = 1 since ΩM = IM . The

eigenvalues of M are given by [19]:

μk =
M−1∑
i=0

ωki
MλM−i ; k = 0, . . . , M − 1 (20)

where ωM = exp
(

2πi
M

)
is the M -th root of unity.

Any subset composed of n′ distinct elements of
{1, ωM , . . . , ωM−1

M } forms a free set over Q if 2 ≤ n′ ≤
ϕ(M) where ϕ(.) stands for Euler’s function. Consider the
case where ϕ(M) ≥ n. In this case, μk 	= 0 for k =
1, . . . , M − 1 since λ1, . . . , λn−1, λM multiply different el-
ements of the set {1, . . . , ωM−1

M } and since λM = 1. Only
μ0 =

∑M
i=1 λi can be equal to zero. Therefore, the rank of

M verifies: r � rank(M) ≥ M − 1.
For r = M , eq. (14) is verified only if a1 = · · · = an = 0M

implying that the non-zero matrices given by C(a1, . . . , an)
with (a1, . . . , an) ∈ An have full rank.
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Fig. 6. Performance of FSO systems with 4-PPM. The 2 × 1 and 2 × 2
systems are encoded by the first family of codes. The second family of codes
is used to encode the 3 × 1 and 3 × 3 systems.

For r = M − 1, the M components of the vector X in eq.
(14) can be determined from a single parameter t. Without
loss of generality, we fix t = YM . In this case, X can be
written as: X = t[β1, . . . , βM−1, 1]T with βm ∈ Q∗ for m =
1, . . . , M − 1 since M ∈ QM×M . On the other hand, X ∈ A
given in eq. (8) only if X has no more than two non-zero
components. Consequently, since we are considering the case
M ≥ n ≥ 3, the only vector of the setA that has the preceding
structure is the all-zero vector. In other words, X /∈ A when
t 	= 0. Since eq. (14) is verified for X = a1, . . . , an, this
implies that when r = M − 1 and M ≥ 3, the only rank-
deficient codeword is the all-zero matrix. On the other hand,
the condition M ≥ n is verified when ϕ(M) ≥ n (since
M > ϕ(M) ∀M ). Consequently, the code is fully diverse for
all values of M verifying ϕ(M) ≥ n.

APPENDIX B

Given thatM is circulant, thenMm = Ωm−m′Mm′ where
Mi stands for the i-th column ofM. On the other hand, given
that any non-zero vector of A in eq. (8) must have M − 2
zero components and two components that are equal to +1
and −1 respectively. Therefore, it is possible for a non-zero
vector of A to verify eq. (14) only if two (or more) columns
of the matrix M are equal to each other. In other words, eq.
(14) admits a non-trivial solution if ∃m, m′ | Mm = Mm′

implying that Mm′ = Ωm−m′Mm′ . In the same way, since
Mm′ = Ωm′−1M1, then eq. (14) can admit a non-trivial
solution if the following relation is verified:

∃ m ∈ {1, . . . , M − 1} | Y = ΩmY (21)

where for notational simplicity we fix Y = M1. The i-th
component of ΩmY is equal to Yπm(i) where πm stands for the
cyclic permutation of order m given by: πm(i) = (i−m−1)
mod M + 1. Therefore, for a given value of m, eq. (21) can
be written as a set of M equations given by:

Yi = Yπm(i) ; i = 1, . . . , M (22)
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Designate by k = gcd(m, M) the greatest common divisor
between m and M (with m ∈ {1, . . . , M − 1}). Follow-
ing from the periodicity of the cyclic permutations, the M
equations given in eq. (22) can be separated into k groups of
equations where each group is composed of M/k equalities.
The equations of the i-th group can be written as:

Yi = Yi+k = · · · = YM−k+i ; i = 1, . . . , k (23)

Setting i′ = k− i+1 in the last equation implies that M/k
components of Y are equal to YM−i′+1 for i′ = k, . . . , 1.
Consider for example the case of M = 10 with a permutation
of order m = 4. In this case, the vectors that verify eq. (21)
can be parameterized by two parameters Y9 and Y10. In this
case, all the components of Y having odd indices must be
equal to Y9 while the components with even indices are all
equal to Y10.
In all cases, Y1 = 1 since λ0 = 1 in eq. (15). Therefore, for

i = 1, the first group of equations given in eq. (23) contains
the following equality:

YM−k+1 = Y1 = 1 (24)

On the other hand, from eq. (15), Yi = λi−1 for i =
1, . . . , M with Yi = 0 for i > n. In other words, eq. (24)
can never be verified when M − k + 1 > n. In other words,
eq. (21) can never be verified when n ≤ M − k.
In order to have a fully diverse code, eq. (21) must not

be verified for all values of m ∈ {1, . . . , M − 1} (and
consequently for all the corresponding values of k). Therefore,
the values of n that verify eq. (24) for all possible values of k
must verify the inequality n ≤ M −d(M) where d(M) is the
biggest divisor of M in the set {1, . . . , M −1}. For the values
of n respecting this inequality, eq. (21) can not be verified for
all values of m and consequently eq. (14) does not admit a
non-trivial solution resulting in a full transmit diversity order.
Suppose that M is an even number that is not a multiple of

4. Consider the value of n given by: n = M − d(M) + 1 =
M/2 + 1. The integer n is an even number and eq. (24) can
not be verified for k = d(M). In fact, for this value of k, eq.
(24) implies that:

YM−d(M)+1 = Yn = λn−1 = −kn
1 = Y1 = 1 (25)

Since n is even, the equation kn
1 = −1 can not be verified

for real values of k1 and consequently eq. (24) can not be
verified. Therefore, in this case the proposed code is fully
diverse not only for n ≤ M − d(M) but also for n = M −
d(M) + 1 resulting in n ≤ M − d(M) + 1.

APPENDIX C

When M is a prime number, the set {πm(m′) ; m′ =
1, . . . , M} is equal to the set {1, . . . , M} for all integer values
of m. Therefore, eq. (21) can be verified only if all the
components of the vector Y are equal. Since Y1 = 1, this
implies that Ym = 1 for m = 1, . . . , M . For M = n, this
implies that:

λi = 1 ; i = 0, . . . , n − 1 (26)

¿From eq. (12), λi is the coefficient of Ωi in the
polynomial obtained from calculating det(R) where R =
[C(−1, k1, . . . , kn−1)]

T and C is given in eq. (6).

Suppose that there exist n−1 rational numbers k1, . . . , kn−1

for which eq. (26) is verified. In this case, det(R) =
∑n−1

i=0 Ωi

and consequently det(R) = 0 when the parameter Ω is
replaced by ωM (the M -th root of unity).
On the other hand, the matrix R = [C(−1, k1, . . . , kn−1)]

T

has the structure of the rate-1 M × M ST codes constructed
from cyclotomic field extensions (eq. (2) in [11]). For Ω =
ωM , the polynomial xM −ωM is irreducible over Q according
to proposition 5 in [11]. Consequently, the matrix R has a full
rank because it can not be equal to the all-zero matrix since
its diagonal elements are equal to −1. This is in contradiction
with det(R) = 0 implying that there are no rational numbers
k1, . . . , kn−1 that result in a matrix M having all of its
components equal to 1. Therefore, when n = M is a prime
number eq. (21) can not be verified implying that the code is
fully diverse.

APPENDIX D

Denote by Mi the i-th column of M. From eq. (15),
the columns of M are related to each other by the relation:
Mm = Ωm−m′Mm′ for m, m′ = 1, . . . , M . On the other
hand, each non-zero vector of A in eq. (8) can have two com-
ponents that are different from zero. In this case, it is possible
for a non-zero vector of A to verify eq. (14) only if two
(or more) columns of the matrix M are proportional to each
other. In other words, eq. (14) admits a non-trivial solution if
∃ m′, m′′ | Mm′ = qMm′′ where q is a non-zero rational
number. The last relation implies that M1 = qΩm′′−m′M1

where m′′ − m′ ∈ {−(M − 1), . . . , M − 1}. Given that
Ωm′′−m′

= Ωm′′−m′+2M , then eq. (14) can admit a non-trivial
solution if the following relation is verified:

∃ m ∈ {1, . . . , M − 1}, ∃ q ∈ Q | Y = qΩmY (27)

where we fix Y = M1.
Designate by πm the cyclic permutation of order m given

by: πm(i) = (i − m − 1) mod M + 1. Following from
eq. (7), the i-th component of ΩmY is equal to −Yπm(i) for
i = 1, . . . , m and it is equal to Yπm(i) for i = m + 1, . . . , M .
Therefore, for a given value of m, eq. (27) can be written as
a set of M equations given by:

Yi =
{ −qYπm(i) ; i = 1, . . . , m

qYπm(i) ; i = m + 1, . . . , M
(28)

Designate by k = gcd(m, M) the greatest common divisor
between m and M (with m ∈ {1, . . . , M − 1}). Follow-
ing from the periodicity of the cyclic permutations, the M
equations given in eq. (28) can be separated into k groups
of equations where each group corresponds to the relations
verified by M/k components of Y . The equations of the i-th
group are given by:

Yi = Ii,1qYπm(i) = Ii,2q
2Yπ2m(i) = · · ·

= Ii, M
k −1q

M
k −1Y

π(M
k

−1)m
(i)

; i = 1, . . . , k (29)

where Ii,j = ±1 for i = 1, . . . , k and j = 1, . . . , M
k − 1.

From eq. (28), Ii,1 = −1, however, the values taken by Ii,j

for j 	= 1 will depend on m, k and M .
Denote by X(m) the M -dimensional vector given by

X(m) = Ωm[1 · · · 1]T . The structure of the matrix Ω implies
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that X
(m)
m′ = −1 for m′ = 1, . . . , m and X

(m)
m′ = 1 for

m′ = m + 1, . . . , M . Following from eq. (28) and eq. (29),
the value of Ii,j can be obtained from the following relation:

Ii,j = Ii,j−1X
(m)

π(j−1)m(i)
(30)

with Ii,1 = −1.
For a given value of i, completing the iterations given in

eq. (29) will result in the additional equality given by:

Yi = Ii, M
k

q
M
k Y

π
M
k

m(i)
= Ii, M

k
q

M
k Yi (31)

where the second equality follows from the fact that k divides
m and πl(i) = i if l is a multiple of M . From eq. (30), Ii, M

k

can be written as:

Ii, M
k

=

M
k −1∏
j=0

X
(m)
πjm(i) (32)

Given that k = gcd(m, M), we fix M = kM ′ and m =
km′. On the other hand:

πjm(i) = (i − jm − 1) mod M + 1
= i − jm − 1 + cM + 1

= i + k(cM ′ − jm′) � i + c′k (33)

where c is an integer verifying the condition that 1 ≤ i+c′k ≤
M where c′ = cM ′− jm′. By reordering the elements i+ c′k
in increasing order we obtain:

{X(m)
πjm(i)}

M
k −1

j=0 = {X(m)
i+jk}

M
k −1

j=0 (34)

Following from the structure of X(m), X
(m)
i+jk = −1 for

i + jk ≤ m = km′. Consequently, X
(m)
i+jk = −1 when i ≤

k(m′− j). Given that i ≤ k, then the last inequality holds for
j < m′. Therefore, combining eq. (32) and eq. (34) results in:

Ii, M
k

=
m′−1∏
j=0

X
(m)
i+jk

M
k −1∏

j=m′
X

(m)
i+jk = (−1)m′

(1)
M
k −m′

= (−1)m′

(35)
Consider the case where M ′ = M

k = 2M ′′ is an even
number. Suppose that m′ is an even number, then m′ can be
written as m′ = 2m′′. Consequently, M = kM ′ = 2kM ′′

and m = km′ = 2km′′ implying that in this case 2k will be
the greatest common divisor between m and M which is in
contradiction with k = gcd(m, M). Therefore, m′ is always
odd when M

k is even. Consequently, eq. (35) will result in
Ii, M

k
= −1. Replacing this value of Ii, M

k
in eq. (31) results

in (1+ q
M
k )Yi = 0 implying that Yi = 0 given that M

k is even
and q is a rational number. Replacing Yi = 0 for i = 1, . . . , k
in eq. (29) results in Yi = 0 for i = 1, . . . , M . Therefore, for
a given value of m, if M

gcd(m,M) is an even number, then the
only vector Y that satisfies eq. (27) is the all-zero vector.
Since eq. (34) follows only from the properties of the cyclic

permutation, then this equation will hold if X(m) is replaced
by Y . Therefore, for a given value of i, the component of
Y having the highest index in eq. (29) is Yi+jk = Yi+M−k

obtained by setting j = M
k − 1. Setting i′ = k − i + 1

implies that, from eq. (29), M/k components of Y are equal
to YM−i′+1 for i′ = k, . . . , 1.

Consider for example the case of M = 10 and m = 4. In
this case, the vectors that verify eq. (27) can be parameterized
by two parameters Y9 and Y10. All the components of Y hav-
ing odd indices are proportional to Y9 while the components
with even indices are all proportional to Y10.
In all cases, Y1 = 1 since λ0 = 1 in eq. (15). Therefore, for

i = 1, the first group of equations given in eq. (29) contains
the following equality:

p1q
p2YM−k+1 = Y1 = 1 ; p1 ∈ {−1, +1} ; p2 ∈ Q\{0}

(36)
On the other hand, from eq. (15), Yi = λi−1 for i =

1, . . . , M with Yi = 0 for i > n. In other words, eq. (36)
can never be verified when M − k + 1 > n. In other words,
eq. (27) can never be verified when n ≤ M − k.
In order to have a fully diverse code, the relation n ≤ M−k

must be verified for all values of m ∈ {1, . . . , M − 1} (and
consequently for the corresponding values of k) respecting the
condition that M

k is odd (because as shown before if this value
is even then eq. (27) will imply that Y = 0M ).
Therefore, the values of n that verify eq. (36) for all possible

values of k must verify the inequality n ≤ M − d(M) where
d(M) is the biggest divisor of M in the set {1, . . . , M −
1} verifying the condition that M

d(M) is odd. When M is not
a power of 2, d(M) always exists and for the values of n
respecting n ≤ M − d(M), eq. (27) can not be verified for
all values of m and consequently eq. (14) does not admit a
non-trivial solution resulting in a full transmit diversity order.
Consider now the case where M is a power of 2. Given

that n ≤ M , the M × M matrix M can be expressed as:

M =

⎡
⎢⎢⎢⎢⎣

λ0 γλM−1 · · · γλ1

λ1 λ0
. . .

...
...

. . .
. . . γλM−1

λM−1 · · · λ1 λ0

⎤
⎥⎥⎥⎥⎦ (37)

where γ = −1 and λ0 = 1.
Equation (37) has the structure of the rate-1 M × M ST

code constructed from cyclotomic field extensions (eq. (2) in
[11]). For γ = −1, the polynomial xM −γ is irreducible over
Q according to proposition 5 in [11]. Consequently, M has
a full rank because it can not be equal to the all-zero matrix
since its diagonal elements are equal to 1. Therefore, eq. (14)
imply that a1 = · · · = an = 0M implying that the proposed
code is fully diverse for n ≤ M when M = 2j .

APPENDIX E

For a given value of n, denote by dM the coding gain
of the proposed schemes when associated with M -PPM.
dM ≥ dM ′ for M ≥ M ′ since in this case the M -PPM
constellation is obtained by adding new dimensions to theM ′-
PPM constellation. Consequently:

d2 ≤ d3 ≤ · · · ≤ d∞ (38)

On the other hand, consider the matrix C1 that is equal
to the difference between two codewords given by C1 =
C(a1, . . . , an) for a1 = [1,−1, 01×(M−2)]T ∈ A and a2 =
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· · · = an = 0M ∈ A where A is given in eq. (8). The coding
gain verifies the relation:

dM � min
(a1,...,an)∈A0

[
det
(
(C(a1, . . . , an))T C(a1, . . . , an)

)] 1
n

≤ [det
(
CT

1 C1

)] 1
n = [det (2In)]

1
n = 2 ∀ M (39)

where A0 � An\{(0M , . . . , 0M )}.
On the other hand, for M = 2, the set A can be written as:

A =
{
[0 0]T ; [1 − 1]T ; [−1 1]T

}
=
{
a[1 − 1]T ; a = 0,±1

}
(40)

Therefore, the difference between two codewords can be
written as: C = C0 ⊗ [1 − 1]T where the elements of the
matrix C0 belong to the set {0,±1}. Consequently:

CT C =
(
CT

0 ⊗ [1 − 1]
) (

C0 ⊗ [1 − 1]T
)

= CT
0 C0 ⊗ 2 = 2CT

0 C0 (41)

Consequently,
[
det
(
CT C

)] 1
n = 2

[
det
(
CT

0 C0

)] 1
n and the

minimum nonzero value of
[
det
(
CT C

)] 1
n is equal to 2 since

det
(
CT

0 C0

)
is a natural integer given that elements of C0

belong to the set {0,±1}. Consequently:
d2 ≥ 2 (42)

Finally, combining eq. (38), eq. (39) and eq. (42) results in:

2 ≤ d2 ≤ d3 ≤ · · · ≤ d∞ ≤ 2 (43)

resulting in dM = 2 for all values of M .
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