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Abstract—The performance of vehicular data networks (VDNs)
is highly dependent on vehicular traffic. Existing studies on VDNs
consider custom-developed traffic models that mimic real-life
vehicular traffic behavior and prepare the ground for accurate
VDN performance evaluation. Traffic evolution is affected by nu-
merous random events. Some developed models are microscopic.
They independently consider some possible factors (e.g., weather,
road geometry, and drivers’ skills). These microscopic models are
complex, and their implementations may be costly. Other models
are macroscopic. They revolve around only the following three
major traffic parameters: 1) density; 2) flow; and 3) speed. The
majority of such existing models are unrealistic, because they are
based on restrictive assumptions tailored to their enclosing study.
Comparing the performance of VDN protocols becomes adequate
if and only if these protocols are all developed on top of the
same traffic model. Unfortunately, the opposite is true. Hence, the
design of a generic traffic model that serves as a basis for future
studies on VDNs is equally urgent and important. This paper
presents a comprehensive and traffic-theory-inspired macroscopic
description of vehicular traffic behavior over roadway facilities
that operate under free-flow traffic conditions. Accordingly, a sim-
ple and tractable macroscopic traffic model is proposed. Extensive
simulations are conducted to verify the validity of the proposed
model and its high accuracy.

Index Terms—Free-flow, modeling, queueing, traffic, vehicular.

I. INTRODUCTION

THE CONCEPTION of vehicular data networks (VDNs)
consists of transforming vehicles into intelligent mobile

entities that can wirelessly communicate with each other and
with stationary roadside units (SRUs). This way, a highly
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dynamic self-organized network that supports a large variety of
safety,1 convenience, and leisure2 applications can be formed.

Pragmatically, researchers, network operators and engineers,
as well as the large vehicular industry and some government
authorities, have shown a recent interest in this emerging net-
working conception [1]–[6]. In fact, the majority of the leading
vehicle manufacturers are producing communication-enabled
vehicles that are equipped with small yet powerful wireless
devices, Global Positioning System (GPS) units, navigation
systems that are loaded with digital maps, and a large number
of real-time monitoring sensors. The U.S. Federal Communi-
cations Commission (FCC) has dedicated the 5.9-GHz band
for short/medium-range communication services that support
intelligent transportation systems to expedite intervehicle and
vehicle-to-roadside communication [7]–[9].

As opposed to traditional wireless ad hoc networks [10],
a vehicular network exhibits volatile connectivity and has to
handle a variety of network densities. For example, a vehicular
network that is deployed over a rural roadway or within an ur-
ban area is likely to experience higher nodal densities. This case
is particularly true during rush hours (e.g., 8:00–10:00 A.M.
and 4:00–7:00 P.M.). However, during late-night hours and
whenever deployed over large highways or within scarcely
populated areas, a vehicular network is expected to suffer from
frequent network partitioning and repetitive link disruptions.
Over the last couple of years, the networking research com-
munity has witnessed many publishable studies that revolve
around the connectivity analysis and the proposal of routing
and forwarding schemes that handle the broadcast storm (e.g.,
[11] and [12]) and data delivery (e.g., [13]) in the context of a
dense vehicular network. These studies were conducted under
the simplified assumption that these vehicular networks are
naturally well connected. In contrast, although the development
of reliable, timely, and resource-efficient forwarding schemes
that support the diverse topologies of vehicular intermittently
connected networks (VICNs) is crucially challenging, it is
believed that the immature understanding of network disruption
causes and resolution procedures persistently leads to inade-
quate scheme designs and inaccurate performance analysis and
evaluation.

1The propagation of warning messages, including but not limited to real-
time traffic state (e.g., position, speed, and direction of surrounding vehicles)
and environmental data (e.g., congestion, pollution degrees, roaming patterns,
and driving habits), in an attempt to predict and alert drivers of possible critical
situations.

2Applications that were designed to promote passenger and driver comfort
(e.g., traffic-aware route recommendation, Internet access, file sharing, and
peer-to-peer services).
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Although the universally known delay-tolerant networking
(DTN)/disruption-tolerant networking’s store–carry–forward
mechanism (see [14]) has emerged as a highly effective so-
lution that mitigates VICNs’ link disruptions, the published
performance evaluations of various VICN forwarding schemes
that adopt this mechanism have been shown to be inconsistent
with real-life experimental observations. Since then, the net-
working research community has been expressing a growing
interest in uncovering the major cause of this inconsistency.
Recently, several researchers have linked and proved that the
reason behind this conflict between the real-world experimental
observations and the theoretical analysis is the utilization of
unrealistic theoretical vehicular traffic models (for example,
see [16] and [17]). Following this case, every published work
enclosed a customized model that attempts to emulate the
realistic behavior of vehicular traffic. The vehicular traffic is
affected by a large number of random events (e.g., weather, road
geometry, drivers’ skills and habits, and haphazard catastrophic
incidents). So far, the open literature lacks any model that
accounts for all such events. However, some of the developed
models tend to have a microscopic aspect (for example, see
[18] and [19]), because they independently consider factors
such as weather, road geometry, commuter’s skills, and habits.
These microscopic models are complex, which renders them
highly theoretical with limited implementation feasibility for
simulations. Other models take on the macroscopic aspect
(for example, see [20] and [21]). Macroscopic models revolve
around the following three major traffic parameters: 1) the
vehicular density; 2) the traffic flow; and 3) vehicles’ speeds.
Most of the existing models deviate from reality, because they
are based on highly restrictive assumptions (e.g., all vehicles
navigate at a single constant speed, and vehicles’ speeds are
independent of the vehicular density) tailored to their enclosing
study. Ultimately, because existing VICN forwarding schemes
have different underlying traffic models, comparing their per-
formance is not meaningful.

This paper aims at achieving the following three objectives:
1) To present a comprehensive and traffic-theory-inspired

macroscopic description of free-flow traffic conditions,
i.e., conditions3 where vehicular traffic is typically char-
acterized by low to medium vehicular density, arbi-
trarily high mean speeds, and stable flow, over 1-D
uninterrupted4 roadway segments, the purpose of which
is to introduce a generic notation for the aforementioned
three macroscopic traffic parameters and highlight the
strong correlation between them;

2) To propose a novel and universal simple free-flow traffic
model (SFTM) that is based on the presented free-flow
traffic behavior description;

3) To conduct a case study with the purpose of giving more
insight into the integration of the proposed SFTM traffic
model into the design and analysis of VICN forwarding
schemes.

3Note that, under such conditions, delay tolerance becomes a major require-
ment for successful data delivery, because low to medium vehicular density
coupled with high vehicle speeds causes the network to become sparse and
subject to frequent link disruptions.

4No grade intersections, traffic lights, stop signs, direct access to adjoint
lands, and bifurcations.

The remainder of this paper is organized as follows. In
Section II, a selection of major related work is discussed,
along with the novel contributions enclosed in this paper.
Section III presents a comprehensive description of the free-
flow traffic model, based on which the novel SFTM is proposed.
In Section IV, extensive simulations are conducted to verify the
validity and accuracy of the proposed SFTM. In Section V, a
case study is conducted to give more insight into the integration
of SFTM into the development and performance evaluation of
VICN forwarding schemes. Finally, this paper is concluded in
Section VI.

II. RELATED WORK

A. Selective Literature Survey

The networking community has, so far, witnessed the publi-
cation of various seminal studies that incorporate traffic mod-
els that attempt to emulate realistic vehicular traffic behavior.
These traffic models can be classified as follows.

1) Stochastic Traffic Models: These models are simplistic
and do not account for any of the fundamental principles of
the vehicular traffic theory. They describe the random mobility
of vehicles using graphs that represent roadway topologies.
The movement of vehicles is random, because either individual
or a group of vehicles navigate at random speeds over any
arbitrary one of the paths represented by the graph. The in-
teractive behavior among vehicles and the correlation between
the vehicular density, vehicles’ speeds, and the overall traffic
flow rate is often neglected or oversimplified. The performance
of these models is traditionally contrasted to fully random
mobility models that impose no constraints on the nodes’
mobility (e.g., random walk [22] and random waypoint [23]).
Most stochastic models deviate from reality due to their highly
restrictive assumptions.

Examples of stochastic traffic models include the city section
mobility model (CSMM), which was introduced in [24]. Under
CSMM, all edges of the roadway topology graph are considered
bidirectional and 1-D roads. All the edges intersect and form
a grid. Vehicles select at random one of the intersections as
their travel destination. They move toward this destination at
constant speed. Motions are either vertical or horizontal. In
addition, the model distinguishes between two speed levels,
respectively, a high and a low speed.

In [25], the effect of different mobility models on a se-
lection of vehicular networking performance metrics is in-
vestigated. For this purpose, they adopt a freeway mobility
model (FMM) and a Manhattan mobility model (MMM). Under
FMM, freeways are considered multilane and bidirectional.
Furthermore, the vehicular mobility is subject to the following
set of constraints: 1) A vehicle is not allowed to switch lanes;
2) the speeds of vehicles are assumed to be uniformly distrib-
uted over a specific range; and 3) vehicles must be spaced out
by a minimum safety distance. Finally, the authors conduct their
study under the assumption that no more than one vehicle exists
on the considered roadway segment.

2) Traffic Stream Models: Such models interpret vehicular
mobility as a hydrodynamic spatiotemporal phenomenon. They



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

KHABBAZ et al.: SIMPLE FREE-FLOW TRAFFIC MODEL FOR VEHICULAR INTERMITTENTLY CONNECTED NETWORK 3

fall under the category of macroscopic models. This is partic-
ularly true because they regard vehicular traffic as a flow and
relate the following three fundamental macroscopic parameters:
1) the vehicular density; 2) the vehicles’ speed; and 3) the traffic
flow rate. Traffic stream models do not independently consider
the per-vehicle behavior. Instead, they describe the collective
behavior of large vehicles streams. This approach renders them
of particular utility for high-level analytical studies of traffic
behavior as part of the design of data delivery schemes for
vehicular networks. Nevertheless, the existing macroscopic
models in the open literature are based on different restrictive
and case-specific assumptions. Hence, comparing the perfor-
mance of designed data delivery strategies built on top of these
models becomes not meaningful. The networking research
community lacks a universal macroscopic model that is simple,
realistically accounts for the fundamental principles of vehicu-
lar traffic theory and, hence, constitutes the primary building
block in the design of vehicular networking data delivery
schemes.

The simplest model of this kind was proposed in [20], where
the authors assume that the velocity is a function of density.
This model can particularly model kinematic waves and has
been used over the last couple of years by researchers in
vehicular networking.

The work in [26] addresses the joint connectivity and delay-
control problem in the context of a highly restrictive macro-
scopic vehicular mobility model where vehicles navigate at
only two speed levels, respectively, high speed VH and low
speed VL. Precisely, the authors assume that a vehicle may
assume a speed level VH (VL) for an exponentially distributed
amount of time before switching to VL (VH) independent of
the traffic flow and density, the values of which seemed to
arbitrarily be chosen.

In [27], the authors exploit intervehicular communication
to establish continuous end-to-end connectivity. However,
throughout their study, the authors propose to approximate the
macroscopic vehicular traffic dynamics using the combination
of the following three approaches: 1) a fluid model; 2) a
stochastic model; and 3) a density-dependent velocity profile.
Although their proposed approach is remarkably accurate, it is
highly complex.

In [28], the Markov decision process (MDP) approach is
adopted in their design of a data delivery scheme that has the
objective of minimizing the transit delay. In addition to the
remarkable complexity of their MDP framework, the authors
neglect the correlation between the vehicular flow and speed.
Moreover, they assume that vehicle speeds and interarrival
times are drawn from known but unspecified probability distri-
butions. These assumptions render their work highly theoretical
with limited practicality.

3) Car-Following Models: Such models describe the indi-
vidual behavior of each vehicle relative to a vehicle ahead.
Car-following models (for example, see [29]) fall under the
category of microscopic models, which are the most commonly
employed to analytically delineate vehicular traffic dynamics.
In the majority of car-following models, a vehicle’s speed
and/or acceleration is expressed as a function of factors such
as the distance to a front vehicle and the actual speeds of both

vehicles. As such, these models implicitly account for the finite
driver’s reaction time.

Car-following models are very flexible. They may account
for a large number of parameters that pertain, for example,
to vehicle technicalities, commuters’ skills and habits, and
weather constraints, resulting in a remarkable increase of their
degree of accuracy and their level of realism. Furthermore,
car-following models incorporate lane-changing routines that
allow for the regulation of vehicles’ mobility in between lanes.
Consequently, these models can easily describe the vehicu-
lar traffic behavior over individual multilane roadways. Car-
following models may also be used to simulate traffic dynamics
on independent roadways of an urban scenario. However, in
simulations, the interactions between traffic flows at road junc-
tions must be handled with care. In other words, intersections
that cross rules in the presence of stop/priority signs and traffic
lights have to be defined within the simulation framework.
Defining such rules within analytical frameworks is highly
complex and often infeasible. This case is particularly true,
because the joint complex description of the acceleration of
different vehicles, lane changing, and intersection management
result in mathematically intractable problems [30]. Compared
with macroscopic models, microscopic models, in general, and
car-following models, in particular, are characterized by a high
level of precision. However, they are highly computationally
expensive, particularly whenever the number of simulated ve-
hicles becomes large. It is observed that, in practice, car-
following models are avoided when large-scale simulations
are conducted. Instead, discrete time models similar to the
approach adopted in this paper are employed. Detailed discus-
sions and comparisons on the implementation of different car-
following models may be found in [19], [31], and [32].

A concise summary of the aforementioned traffic model
categories, together with their advantages and disadvantages,
are laid out in Table I.

B. Novel Contributions

Enlightened by rudimentary principles borrowed from the
vehicular traffic theory [35], the first contribution of this paper
appears in the layout of a concise yet comprehensive study of
the free-flow traffic behavior. Precisely, this paper captures the
macroscopic vehicular traffic features as described by traffic
theorists and characterizes the random density-dependent be-
havior of traffic flow, vehicle speeds, and travel times using
appropriate and highly accurate probability distributions.

Following the macroscopic vehicular traffic study, the second
contribution of this paper manifests itself in the foundation of
a highly accurate queuing-theory-inspired SFTM. In particular,
it is observed that, under free-flow traffic conditions, the prob-
ability that a given road segment attains full capacity5 is zero.
Hence, such a road segment may be modeled as an infinite-
server queuing system, and each vehicle that navigates over
that segment may be modeled as a job that occupies one of the

5One segment of a road has a well-determined length. Consequently, only
a finite number of vehicles may simultaneously navigate within that segment.
This number is referred to as the capacity of the road segment.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

TABLE I
ADVANTAGES AND DISADVANTAGES OF EXISTING TRAFFIC MODELS

available servers for a finite amount of time. This amount of
time is equivalent to the vehicle’s residence time (i.e., the
amount of time that this vehicle will take to travel the entire
segment’s length) and depends on the vehicle’s speed and the
length of the segment. Note that the computation of the mean
vehicle’s residence time using the proposed vehicle speed dis-
tribution, inspired by the vehicular traffic theory, is a complex
task. This is particularly true, because these distributions lead
to integral expressions that have no closed-form solutions. To
work around this problem, we propose to approximate this dis-
tribution using a two-phase Coxian distribution, and we show
that the proposed approximation leads to highly accurate re-
sults. In addition, we characterize one of the major performance
measures of this model, which is the instantaneous number of
vehicles that reside within the considered road segment. This
is equivalent to the instantaneous number of busy servers. In
addition, the steady-state distribution of the number of busy
servers is determined.

Finally, a case study is presented, with the objective of
demonstrating how the proposed SFTM prepares the ground
for an adequate design of vehicular networking data delivery
schemes. Under free-flow traffic conditions, the vehicular net-
work becomes highly prone to link disruptions. This type of
vehicular networks is referred to as a VICN. In the case study
presented, we borrow a two-hop VICN scenario based on [28]
and [40], where connectivity will be established between the fol-
lowing two isolated SRUs: 1) a source S and 2) a destination D.
In the absence of any kind of networking infrastructure, vehi-
cles that pass by S will transport its data bundles to D. For
this purpose, a bulk bundle release scheme (BBRS) is built on
top of the proposed SFTM. Rigorous mathematical analysis and
extensive simulations are conducted to highlight the impact of
the underlying traffic model on the performance analysis of data
delivery schemes such as BBRS.

III. VEHICULAR TRAFFIC ANALYSIS

A. Free-Flow Traffic Characteristics

Consider a roadway segment [AB] such as the roadway seg-
ment depicted in Fig. 1. [AB] has a length LAB (in meters). Let
lv be the mean vehicle length. The capacity of [AB] is defined

Fig. 1. Free-flow vehicular traffic over the roadway segment [AB].

as CAB = (LAB/lv) (vehicles) [35]. The mean vehicular den-
sity ρv (in vehicles per meter) is defined as the mean number of
vehicles per unit length. Thus, the maximum vehicular density
is ρmax = (CAB/LAB) = (1/lv). The vehicular flow rate µv

(in vehicles per second) is defined as the mean number of
vehicles that pass a fixed point on [AB] per unit time.6 Without
loss of generality, this fixed point is assumed to be the entry
point to the segment (i.e., point A). In the following discussion,
the event of a vehicle entering [AB] at point A is referred to
as a vehicle arrival. Therefore, µv is interpreted as the vehicle
arrival rate whose maximum is denoted by µmax. Let Smax

denote the speed limit over the segment [AB].
The observation of [AB] begins at a certain point in time

t0 (e.g., very early morning) set as the origin of the time axis
(i.e., t0 = 0), where [AB] is empty (i.e., no vehicles navigate
over [AB], ρv = 0, and µv = 0). After some time, vehicles
start arriving to [AB], causing ρv to gradually increase with
time. µv also exhibits a gradual stable7 increase as a function
of ρv . However, there exists a critical density value ρc in
which, once reached, vehicle platoons start forming all over
the road segment [AB]. This indicates that [AB] has become
considerably congested and the vehicular flow has attained its
maximum µmax. At this point, [AB] becomes highly unstable
(see [35]), because the slightest traffic perturbation may either
restabilize the traffic flow or cause a transition into a state of
overforced flow, where µv starts decreasing, whereas ρv further
increases. Eventually, at ρmax, µv = 0, indicating that [AB]
experiences a traffic jam.

From the point of view of vehicular ad hoc networks
(VANETs), the formation of an end-to-end path between an
arbitrary pair of nodes becomes highly probable whenever the

6In this paper, time is measured in units of seconds.
7The flow of vehicles into and out of [AB] are equal.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

KHABBAZ et al.: SIMPLE FREE-FLOW TRAFFIC MODEL FOR VEHICULAR INTERMITTENTLY CONNECTED NETWORK 5

vehicular density is high (i.e., ρc ≤ ρv ≤ ρmax), regardless of
whether those nodes are fixed (e.g., SRUs) or move along
the road segment (i.e., vehicles that are equipped with wire-
less devices). In this situation, delay tolerance is no longer a
requirement, and typical wireless protocols can be used over
intervehicular-enabled VANETs to establish a multihop con-
nectivity between a particular data source and destination. Ob-
viously, this is not the case whenever the road segment operates
under free-flow traffic conditions (i.e., 0 < ρv < ρc), where
the network becomes sparse and prone to link disruptions.
Therefore, cases of overforced vehicular traffic are ignored in
this paper.

As shown in Fig. 1, an arbitrary vehicle i with speed si

enters [AB] at time ti, resides within [AB] for a period
Ri = (LAB/si), and exits at time ei = ti + Ri. Subsequently,
vehicle i + 1 with speed si+1 arrives at time ti+1, resides within
[AB] for a period Ri+1, and departs at time ei+1. In the traffic
theory, the time headway is defined as the time interval between
successive vehicles that cross the same reference point on a
road segment [35]. In this paper, it is assumed that the reference
point is the entry point to [AB] (i.e., point A). Thus, the time
headway becomes equivalent to the vehicle interarrival time,
which is denoted by I = ti+1 − ti. Selecting a distribution for
I is a delicate task that has to carefully be handled.

In [15], the authors have conducted thorough experiments
over highways surrounding the city of Madrid, Spain. They
have collected large sets of realistic traces during the following
two separate time intervals: 1) rush hours from 8:30 A.M.
to 9:00 A.M. and 2) non-rush hours from 11:30 A.M. to
12:00 P.M. After thorough analysis of their collected data
sets, the authors found that I is best modeled by a weighted
exponential–Gaussian distribution mixture. Indeed, this find-
ing is of notable importance. In fact, this model particularly
accounts for the intervehicular behavioral dependencies under
dense traffic conditions and, furthermore, correctly charac-
terizes I , irrespective of the time of the day during which
an arbitrary roadway segment is observed. Nevertheless, the
primary objective of this paper is the development of a sim-
ple macroscopic model to characterize the vehicular traffic
behavior under strict free-flow conditions. For this purpose,
we need to only consider non–rush hours, i.e., late night and
early morning hours from 7:00 P.M. to 8:00 A.M. and midday
hours from 10:00 A.M. to 4:00 P.M. The authors in [18] and
[33] have also conducted real-life experiments during these
hours on the I − 80 freeway in California. The realistic data
traces that they have obtained show that the vehicle interarrival
time during non–rush hours is exponentially distributed. In
addition, the analysis presented in [18] shows that, during
these hours, particularly whenever the vehicular flow is below
1000 vehicles/h, the intervehicular distance is relatively large.
In other words, vehicles that navigate on a roadway segment
appear to be isolated, and hence, the vehicle arrivals to an
arbitrary geographical reference point become independent and
identically distributed. This result has also been confirmed
in [15].

Inspired by this last observation, we have conducted thor-
ough simulations using the Simulation for Urban Mobility
(SUMO) simulator. SUMO is a microscopic simulator that

Fig. 2. Vehicle interarrival time cumulative distribution function for a flow
rate of 260 vehicles/h.

provides realistic vehicular mobility traces for use as input for
other vehicular networking simulators. The same scenario was
simulated for different vehicular flow intensities, all of which,
however, are less than 1000 vehicles/h. A well-defined geo-
graphical reference point was defined for all these simulations,
and vehicle arrival times to this reference point were computed.
The difference between two consecutive vehicle arrival times
gives one sample of the vehicle interarrival time. The conducted
simulations spanned a period of time that is long enough to
collect 105 interarrival time samples per simulation. Due to
space limitations, the results of only one simulation scenario
are reported herein in Fig. 2. This figure plots the cumulative
distribution function of the collected data samples together with
its theoretical counterpart. It is, indeed, a tangible proof that I
is exponentially distributed.

Note that the mean vehicle interarrival time, I = E[I], is
inversely proportional to the vehicle arrival rate µv . It fol-
lows that the probability density function (pdf) of I can be
expressed as

fi(t) =
1
µv

e−
t

µv for t ≥ 0. (1)

Denote by S the mean of vehicle speeds observed over [AB]. It
is established in [35] that

S = Smax

(
1 − ρv

ρmax

)
. (2)

Define R = (LAB/S) as the mean vehicle residence time
within [AB] and N as the mean number of vehicles in [AB].
Hence, the following relationship is established using Little’s
law:

µv =
N

R
=

N · S
LAB

= ρv · S = −Smax

ρmax
ρ2

v + Smaxρv. (3)

According to (3), it is clear that µv = 0 at both ρv = 0
and ρv = ρmax. In addition, the maximum flow rate
µmax = (Smaxρmax/4) occurs at the critical density value
ρv = (ρmax/2) = ρc. The critical speed is defined as Sc =
S|ρv=ρc

=(Smax/2). Recall that this paper considers only free-
flow traffic conditions (i.e., ρv ∈ [0; (ρmax/2)]). According



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

to [35], under free-flow traffic conditions, the speed si(i > 0) of
an arbitrary arriving vehicle i is a normally distributed random
variable with a pdf given by

fS(si) =
1

σS

√
2π

e
−
(

si−S

σS
√

2

)2

. (4)

In [34], it is justifiably assumed that σS = kS and si ∈
[Smin;Smax], where Smin = S − mσS , and the two-tuple
(k,m) depends on the ongoing traffic activity over the observed
roadway segment and is determined based on experimental
data. Accordingly, in the rest of this paper, a truncated version
of fS(si) in (4) will be adopted. It is defined as

f̂S(si) =
fS(si)

Smax∫
Smin

fS(si)dsi

=
2fS(si)

erf
(

Smax−Sv

σSv

√
2

)
− erf

(
Smin−Sv

σSv

√
2

) (5)

for Smin ≤ si ≤ Smax. Furthermore, a seminal study that was
conducted in [36] together with extensive real-life experimenta-
tions and data acquisition over numerous roadways show that si

is constantly maintained during the vehicle’s entire navigation
period on the road. Let F̂S(v) and FR(τ) denote the respective
cumulative distribution functions of the vehicle’s speed and
residence time. It can easily be shown that

FR(τ) = 1 − F̂S

(
LAB

τ

)
= 1 − K

2

[
1 + erf

(
LAB

τ − S

σS

√
2

)]
(6)

where K =2[erf(((Smax−Sv)/σSv

√
2)−erf(((Smin − Sv)/

σSv

√
2))]−1.

Hence, the vehicle’s residence time has a pdf that is ex-
pressed as

fR(r) =
K · LAB

r2σS

√
2π

e
−

(
LAB

r
−S

σS
√

2

)2

, r ∈
[

LAB

Smax
;
LAB

Smin

]
. (7)

B. SFTM

Under free-flow traffic conditions, the road segment [AB]
experiences low to medium vehicle arrival rates (based on
(3), 0 ≤ µv ≤ µmax), whereas the observed vehicle speeds are
high (based on (2), Sc ≤ S ≤ Smax) [34]–[36]. Hence, the
probability that [AB] attains full capacity under such conditions
is zero. In light of the aforementioned conditions, [AB] can be
modeled as an M/G/∞ queuing system, where: 1) Vehicle
arrivals follow a Poisson process with parameter µv; 2) the
number of busy servers at time t is identical to the number of
vehicles within [AB] at time t, which is denoted by N(t); and
3) the busy period of an arbitrary server i is equivalent to the
residence time of vehicle i within [AB], whose pdf is given in
(7). N(t) is one of the major characteristic measures of this
system.

Theorem 3.1: The number of vehicles within [AB] is
Poisson distributed with a parameter µvR.

Proof: Define the following.

• Pn(t) = Pr[N(t) = n].
• Aj(t)=Pr[j vehicles that arrived in (0, t)]=((µvt)je−µvt/

j!).
• Pn|j(t) = Pr[N(t) = n|j arrivals in (0, t)].

Therefore

Pn(t) =
∞∑

j=0

Pn|j(t) · Aj(t). (8)

The probability that an arbitrary vehicle i that arrived at
time ti is found within [AB] at time t is 1 − FR(t − ti).
Recall that vehicle arrivals follow a Poisson process. Hence, the
distribution of the vehicle arrival times conditioned by j arrivals
during time interval (0, t) is identical to the uniform distribution
of j points over (0, t). Accordingly, the probability that any of
the j vehicles that arrived in (0, t) is found within [AB] at time
t is given by

q(t) =

t∫
0

[1 − FR(t − ti)]
dti
t

=
1
t

t∫
0

[1 − FR(ti)] dti. (9)

Consequently, the probability that a vehicle that arrived to
[AB] during the time interval (0, t) would have departed from
[AB] at time t is

1 − q(t) =
1
t

t∫
0

FR(ti) dti. (10)

Knowing q(t), it is easy to show that

Pn|j(t) =
{ (

j
n

)
[q(t)]n [1 − q(t)]j−n, n ≤ j

0, n > j.
(11)

Using (11), (8) can be rewritten as

Pn(t) =
∞∑

j=n

(
j

n

)
[q(t)]n [1 − q(t)]j−n · (µvt)je−µvt

j!

=
[µvt · q(t)]n e−µvt·q(t)

n!
. (12)

Note that limt→∞[t · q(t)] = R. Let N = limt→∞ N(t). Thus,
the limiting probability of having N = n vehicles within
[AB] is

Pn = lim
t→∞

[Pn(t)] =

(
µvR

)n
e−µvR

n!
. (13)

Remark: Pn is independent of fR(r). �
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TABLE II
MAIN SFTM PARAMETERS

Fig. 3. fR(r) versus fCox
R (r) for different values of ρv . (a) ρv = 0.01. (b) ρv = 0.07 vehicle/m. (c) ρv = 0.1.

Fig. 4. Pn versus P̃n for different values of ρv . (a) ρv = 0.01. (b) ρv = 0.07 vehicle/m. (c) ρv = 0.1.

At this stage, recall that the pdf of R is given in (7). Thus

R =

∞∫
0

r · fR(r)dr =

∞∫
0

K · LAB

rσS

√
2π

e
−

(
LAB

r
−S

σS
√

2

)2

dr. (14)

The complex integral in (14) has no closed-form solution. The
squared coefficient of variation c2

v = (σ2
R/µ2

R) captures the

degree of variability of R, where σ2
R is the variance of R, and

µ2
R is the square of its mean. Simple numerical analysis shows

that c2
v > 1. Hence, following the recommendation in [39],

fR(r) may be approximated by a two-phase Coxian density
function fCox

R (r) that is given by

fCox
R (r) = m1 · µ1e

−µ1r + (1 − m1) · µ2e
−µ2r (15)



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

Fig. 5. MSEs (in percentage) for 0.01 ≤ ρv ≤ 0.1. (a) R. (b) N .

where µ1 = 2µR, µ2 = (µ1/c2
v), and m1 = 1 + (µ1/2c2

v(µ1 −
µ2)). Let R̃ denote an approximated version of R that is
computed as

R̃ =

∞∫
0

r · fCox
R (r) dr =

m1

µ1
+

1 − m1

µ2
. (16)

It follows that an approximated version of Pn in (13) is denoted
by P̃n and is expressed as

P̃n =
(µvR̃)ne−µvR̃

n!
(17)

where R is substituted by R̃. In addition, let Ñ represent the
approximated version of N . Hence

Ñ =
∞∑

n=0

n · P̃n = µvR̃. (18)

IV. NUMERICAL ANALYSIS AND SIMULATIONS

A Java-based discrete-event simulator was developed to ex-
amine the validity and accuracy of the proposed SFTM. The
model’s characterizing metrics were evaluated for a total of 107

vehicles and averaged over multiple simulator runs to ensure
the realization of a 95% confidence interval. The following
input parameter values were assumed (see Table II): 1) ρv ∈
[0.005; 0.1]; 2) LAB = 200; and 3) (k,m) = (0.3, 3).

Fig. 3(a) and (c) plots fR(r) together with fCox
R (r), as given,

respectively, in (7) and (15). Similarly, Fig. 4(a) and (c) plots
Pn, as given in (13), concurrent with its approximated counter-
part P̃n. The accuracy of fCox

R (r) and of P̃n was, respectively,
tested for all values of the vehicular density in the range [0.005,
0.1]. Results that correspond to ρv = 0.01, ρv = 0.07, and ρv =
0.1 are shown. These results constitute tangible proofs of the
validity and high accuracy of the established approximations.
This is particularly true, because Fig. 5(a) shows that the high-
est mean square error (MSE) that results from the approxima-
tion of fR(r) by fCox

R (r) is 1.67%, and Fig. 5(b) shows that the
largest MSE that results from the approximation of Pn by P̃n is
0.6%. Finally, extensive simulations were conducted to evaluate

Fig. 6. Variations of R and N as a function of ρv . (a) R and R̃ versus ρv .
(b) N and Ñ versus ρv .

SFTM’s characteristics in terms of the mean vehicle residence
time and the mean number of vehicles within the road segment.
Fig. 6(a) and (b) shows an increase of the mean vehicle’s
residence time and the mean number of vehicles within [AB]
as a function of ρv . This case is explained as follows. As ρv

increases, the mean vehicle speed decreases. Concurrently, the
flow of vehicles increases. As a result, [AB] will experience



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

KHABBAZ et al.: SIMPLE FREE-FLOW TRAFFIC MODEL FOR VEHICULAR INTERMITTENTLY CONNECTED NETWORK 9

Fig. 7. TH-VICN scenario.

faster vehicle arrivals, and the arriving vehicles will spend more
time within [AB].

V. CASE STUDY

This section presents a practical example where the SFTM
may be applied.

A. Networking Scenario

Consider the scenario illustrated in Fig. 7, which depicts
an uninterrupted highway along which two isolated SRUs, a
source S and a destination D, are deployed.8 Both S and
D have a communication range that covers a segment of the
road of length LAB . Moreover, these two SRUs are separated
by a distance LSD � LAB . Connectivity will be established
between S and D. In the absence of all sorts of networking
infrastructure, wireless nodes that are mounted over mobile
vehicles serve as opportunistic store–carry–forward devices
that transport bundles9 from S to D. Vehicles have random
speeds and enter the coverage range of S at random time
instants. No intervehicle communications may occur. Under
such conditions, an intermittence-free end-to-end S–D path
does not exist. A network of this type belongs to a subclass of
vehicular networks that is conveniently referred to as two-hop
vehicular intermittently connected networks (TH-VICNs).

B. Motivation

Major wireless operators in the U.S. (e.g., AT&T and Ver-
izon) have recently reported substantial data traffic growth in
their networks, which is only partly driven by the utilization
of smartphones (e.g., iPhone and BlackBerry). According to
Cisco, wireless networks in North America carried approx-
imately 17 PB per month in 2009. It is projected that, in
2014, these networks will carry around 740 PB, i.e., a 40-fold
increase. This traffic growth is due to the increased adoption
of Internet-connected mobile computing devices and increased
data consumption per device. The aggregate impact of these
devices on demand for wireless broadband access and the load
that they will incur on the service provider networks (SPNs) are
expected to be enormous. Despite the recent advancements in

8Isolated SRUs are located outside their respective coverage ranges and,
therefore, cannot directly communicate.

9Data and control signals are combined in a single atomic entity, called
bundle, that is transmitted across a DTN [40].

wireless communication technologies, the improvement of both
the capacity and coverage of wireless networks has been the
limiting factor for unleashing the wireless broadband capabili-
ties. Motivated by the work in [39], we target the exploitation of
mobile vehicles as a means of boosting the capacity of legacy
wireless networks and extending their coverage ranges. Given
their intrinsic tendency to grow to irregular large scales, vehic-
ular networks present unparalleled opportunistic connectivity
solutions that contribute to satisfying the exponentially growing
user demands for all-time–anywhere connectivity, irrespective
of the spatiotemporal limitations, as well as offloading data
traffic and relieving SPNs from congestions.

The TH-VICN in Fig. 7 becomes of particular utility in rural
or other sparsely populated areas where the setup of a wired
networking infrastructure may be highly expensive [7]. In these
scenarios, SRUs (also known as information relay stations or
data posts) are deployed near disconnected sites, and low-cost
opportunistic end-to-end connectivity is established through
vehicles that ply between these SRUs. Note that very few of
these SRUs, called gateways, may be connected to the Internet
through minimal infrastructure. All other SRUs are completely
isolated (even with no direct connectivity) and powered by
batteries or small solar cells.10 Data traffic is then aggregated
at source SRUs and appropriately routed through vehicles to
destination SRUs. Hence, here, the SRUs can act as both routers
or wireless access points in hot spots.

In other scenarios, two sites may be connected through
microwave links that may suffer from data traffic overload and
from the loss of connectivity due to humidity, rain, storm,
clouds, mist, and fog. Hence, deploying SRUs and exploiting
the vehicular infrastructure to forward traffic from one site to
the other will not only significantly contribute to reducing the
load on the microwaves but also provide a protection channel
upon their failure under bad atmospheric conditions.

C. Primary Objective

The open literature encloses several proposals of bundle
release schemes that aim at achieving delay-minimal bundle de-
livery in the context of the aforementioned TH-VICN scenario
[28], [40]. Although these schemes are particularly appealing,
their corresponding analytical performance evaluations are of
reduced accuracy, because they are based on restrictive traffic

10Energy consumption is important in this case but is outside the scope of
this paper.
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models. In fact, the authors in [28] assume a general distribution
of vehicle speeds and do not account for the correlation between
the aforementioned macroscopic traffic parameters. In [40],
the authors assume uniformly distributed vehicle speeds. This
assumption only holds in particular cases of very light traffic.
Under such conditions, vehicles may independently navigate at
arbitrarily high speeds.

The primary objective of this case study is to give more
insight into how the SFTM may be used to evaluate the per-
formance of release schemes such as the approaches proposed
in [28] and [40]. In particular, it is of interest to determine the
mean bundle end-to-end delay, which is denoted by Ed and
defined as the mean time that it takes for an arriving bundle at
the source SRU S to be delivered to the destination SRU D.
Observe that Ed is composed of the following two factors:
1) the mean bundle queuing delay Qd, defined as the mean time
period that a bundle spends in S’s buffer and 2) the mean bundle
transit delay Td, defined as the mean time that a bundle spends
in the buffer of its carrying vehicle until it is delivered to D.

D. Basic Assumptions

For the purpose of this case study, we have the following
assumptions.

• A1: The bundle arrivals at the source SRU follow a
Poisson process with parameter λ bundles per second.

• A2: All bundles have a fixed size of Sb B.
• A3: The source SRU’s transmission rate is TR b/s.
• A4: The source SRU has an infinite queue size.
Note that assumptions A1–A4 are extracted from [28] and

[40], where they have rigorously been justified.

E. Adopted Bundle Release Scheme

The advancements in wireless technology have allowed for
data transmission rates on the order of tens of megabits per
second, resulting in a negligible bundle transmission time com-
pared to the vehicle residence time.11 Therefore, it becomes
more efficient to release as many bundles as possible during
the entire vehicle residence time instead of releasing only a
single bundle per vehicle. Therefore, for this case study, BBRS
is adopted. Under BBRS, the source SRU S uniformly selects
one of the vehicles present within its communication range and
continuously releases bundles to that vehicle until it goes out
of range. Consequently, every vehicle that leaves the coverage
range of S will carry a bulk of bundles to be delivered to D. In
the following section, a bulk of bundles will simply be referred
to as a bulk. The size of a bulk is a random variable that highly
depends on the number of buffered bundles at the source and
the bundle admission capabilities of the selected vehicle.

F. Modeling and Analysis of BBRS

1) Vehicle Residence Time: In this paper, the essence of
DTN is preserved. This is particularly true, because it is es-

11In this section, the vehicle residence time is defined as the amount of time
a vehicle spends in the range of the source SRU.

tablished that the source SRU S has no a priori knowledge of
vehicle arrival times and speeds. However, similar to [28] and
[40], it is assumed that S is equipped with sensors that enable
the determination of the speeds of arriving vehicles only at the
time of their arrival. Hence, upon the arrival of a vehicle i at
time ti, S determines its speed si and residence time Ri =
(LAB/si). Recall from (5) that Smin ≤ si ≤ Smax. Hence,
the maximum and minimum residence times are, respectively,
Rmax = (LAB/Smin) and Rmin = (LAB/Smax). Ri has an
approximated pdf fCox

R (r) as expressed in (15).
2) Bundle Admission Capability of a Selected Vehicle: The

bundle admission capability of a vehicle i is defined as the
maximum number of bundles Ki that a vehicle may receive
during its entire residence time Ri. Based on assumptions
A2 and A3, the bundle transmission time is Tb = (8Sb/TR).
Therefore, knowing Ri and Tb, the source S computes Ki =
�(Ri/Tb)	. Note that Ki depends on Ri and takes on positive
integer values k (k ∈ Z

+). In addition, it has the respective
upper and lower bounds Kmax = �(Rmax/Tb)	 and Kmin =
�(Rmin/Tb)	. Hence, the probability mass function of Ki is

f̃Ki
(k) =

(k+1)Tb∫
kTb

fCox
R (r) dr = m1e

−µ1kTb
(
1 − e−µ1Tb

)
+ (1 − m1)e−µ2kTb(1 − e−µ2Tb). (19)

It follows that the mean of Ki, which is denoted by K̃i, is
computed as

K̃i = m1(1 − e−µ1Tb)
Kmax∑

k=Kmin

ke−µ1kTb

+ (1 − m1)
(
1 − e−µ2Tb

) Kmax∑
k=Kmin

ke−µ2kTb . (20)

3) Bulk Size: The bulk size is a random variable denoted by
Bi and depends on both X , representing the number of bundles
buffered at S, and Ki. Bi may take on values that depend on
the following three identified cases.

• Case 1. If X = 0, then Bi = 0.
• Case 2. If 0 < X ≤ Ki, then Bi = X .
• Case 3. If X > Ki, then Bi = Ki.

The aforementioned three cases imply the following. For
a known value of Ki, bundles are buffered at S and up to
Ki of them, if they exist, might be released. Consequently, if
X < Ki, then all of the X bundles will be released, leaving
behind an empty queue. Otherwise, if X ≥ Ki, only Ki of them
are released. Once S completes the transmission of these Ki

bundles to vehicle i (which has now departed), it will select
a new vehicle, if available, and start handling the remaining
bundles in its queue. If no vehicles are readily available, then
all remaining bundles will be held in S’s buffer until a vehicle
arrives, and so forth. Ultimately, S cannot release more than
Kmax bundles. This only occurs whenever X ≥ Kmax but
the arriving vehicle’s speed si = Smin. To this end, a source
that operates under BBRS can be represented by an M/M/1
queuing system with bulk bundle release. It is therefore of
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Fig. 8. State-transition-rate diagram that represents the behavior of S under BBRS.

interest to resolve this system in light of the new traffic model
in Section III and derive closed-form expressions for X , which
represents the mean number of bundles in the queue. Then, the
mean bundle queuing delay is computed using Little’s law.

4) Mean Number of Buffered Bundles: Taking X as a state
variable, the state-transition diagram in Fig. 8 represents the
behavior of the queuing system under study. Let Sx (x =
0, 1, 2 . . .) denote the xth state, indicating that X = x. Observe
that all states, except for S0, are entered both from their left-
hand neighbor upon the occurrence of a bundle arrival with
a mean rate λ and their Ki-th neighbor to the right upon the
occurrence of a bulk departure with a mean rate µ. These
states are exited upon the occurrence of either an arrival or a
departure. However, state S0 can only be entered from any one
of its immediate right Ki neighbors upon a departure and exited
upon an arrival. At this point, it is important to note that µ is a
function of the vehicle flow rate µv , i.e., the probability that
there are no vehicles within the coverage range of the source
P̃0 and K̃i. In fact, after completing the transmission of the
most recently released bulk and with a probability P̃0, S will
find no available vehicles within its coverage range. Therefore,
it will have to wait for the occurrence of the next vehicle
arrival to start releasing the next bulk. In this case, the bulk
departure rate is P̃0µv . In contrast, with a probability 1 − P̃0,
after completing the transmission of the most recent bulk, S will
readily find other vehicles within its coverage range. Hence,
it will immediately select one of them, compute its bundle
admission capability, and start releasing the corresponding
bulk. Under such conditions, the bulk departure rate becomes
((1 − P̃0)/K̃iTb). It follows that the overall bulk departure rate
can be expressed as

µ = P̃0µv +
(

1 − P̃0

) 1

K̃iTb

. (21)

Without loss of generality, assume that the choice of S falls on
a vehicle i. The bundle admission capability that corresponds to
this vehicle is Ki. Knowing Ki, denote by Px|Ki

the long-term
probability of finding x bundles in the system. Therefore, the
diagram shown in Fig. 8 leads to the following set of balance
equations:

λP0|Ki
= µ

Ki∑
i=1

Pi|Ki
, for x = 0 (22)

(λ + µ)Px|Ki
= λP(x−1)|Ki

+ µP(x+Ki)|Ki
, for x ≥ 1. (23)

Next, the conditional probability mass function of the number
of bundles in the queue12 is derived.

Theorem 5.1: For a known value of Ki = k, the conditional
probability mass function of the number of bundles in the queue
is given by

fX|Ki
(x) =

(
1 − 1

z∗(k)

) (
1

z∗(k)

)n

, x ≥ 0. (24)

Proof: Let X̃(z|Ki) =
∑∞

x=0 zxPx|Ki
denote the proba-

bility generating function of X , given Ki and ρ = (λ/µ). Using
[38] and proper manipulation of (20) and (21), it is shown that

X̃(z|Ki) =

Ki−1∑
x=0

(zx − zKi)Px|Ki

ρzKi+1 − (1 + ρ)zKi + 1
. (25)

It can easily be shown, using Rouche’s theorem, that the denom-
inator in (25) has Ki + 1 zeros, of which exactly one occurs
at z = 1, exactly Ki − 1 are such that |z| < 1, and only one
that we denote by z∗(Ki) will be such that |z∗(Ki)| > 1. In
addition, observe that the numerator in (25) is a polynomial
in z of degree Ki. One of the roots of this numerator is
z = 1. Recall one of the fundamental properties of probability
generating functions that states that X̃(z|Ki) is bounded by
the region |z| < 1. As a result, the remaining Ki − 1 zeros of
the numerator in (25) must exactly match the Ki − 1 zeroes
of the denominator for which |z| < 1. Consequently, the re-
spective polynomials of degree Ki − 1 of the numerator and
denominator must be proportional, i.e.,

α
Ki−1∑
x=0

(zx − zKi)Px|Ki

1 − z
=

ρzKi+1 − (1 + ρ)zKi + 1

(1 − z)
(

1 − z
z∗(Ki)

) (26)

where α is a proportionality constant. Canceling common fac-
tors in the numerator and denominator in (26) leads to

X̃(z|Ki) =
1

α
(

1 − z
z∗(Ki)

) . (27)

12That is, the probability that X = x, given that Ki = k. We denote this
probability mass function as fX|Ki

(x).
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At this point, the constant α may be found by setting
X̃(1|Ki) = 1. This approach results in having

X̃(z|Ki) =
1 − 1

z∗(Ki)

1 − z
z∗(Ki)

. (28)

Inverting (28) leads to the probability mass function of X
conditioned by Ki = k, i.e.,

fX|Ki
(x) =

(
1 − 1

z∗(k)

) (
1

z∗(k)

)n

, x ≥ 0. (29)

�
Recall that Ki ∈ [Kmin;Kmax]. Hence, the unconditional
probability mass function of X is expressed as

fX(x) =
Kmax∑

k=Kmin

[
m1e

−µ1kTb(1 − e−µ1Tb)

+ (1 − m1)e−µ2kTb
(
1 − e−µ2Tb

) ]
×

(
1 − 1

z∗(k)

) (
1

z∗(k)

)x

, x ≥ 0. (30)

Accordingly, the mean number of bundles in S’s queue is

X̃ = E[X] =
∞∑

x=0

x · fX(x). (31)

5) Mean Bundle Queuing Delay: Using Little’s law, the
mean bundle queuing delay is

Q̃d =
X̃

λ
. (32)

6) Mean Bundle Transit Delay: The transit delay experi-
enced by a bulk of bundles carried by a vehicle i with speed
si is Ti = (LSD/si). Ti has a pdf that is given by

fTi
(t)=

K · LSD

t2σS

√
2π

e
−

(
LSD

t
−S

σS
√

2

)2

, t∈
[

LSD

Smax
;
LSD

Smin

]
.

(33)

Note that fTi
(t) has exactly the same structure as fR(r) given

in (7), with the only difference that LAB is substituted by LSD.
Hence, the approximated density function of Ti is given by

fCox
Ti

(t) = h1 · β1e
−β1t + (1 − h1) · β2e

−β2t (34)

where β1 = 2µTi
, β2 = (β1/c2

v), and h1 = 1 + (β1/2c2
v(β1 −

µ2)). Note that µTi
= (LSD/S), where S is the mean vehicle

speed that was experienced under a given vehicular density
ρv . In addition, c2

v = (σ2
Ti

/µ2
Ti

) is the squared coefficient of
variations, where σ2

Ti
is the variance of Ti.

Let T̃d denote the approximated mean bundle transit delay,
which is computed as

T̃d =

∞∫
0

t · fCox
Ti

(t) dr =
h1

β1
+

1 − h1

β2
. (35)

7) Mean Bundle End-to-End Delay: After computing Q̃d

and T̃d, the final step is to compute the mean bundle end-to-
end delay Ẽd. The mean bundle end-to-end delay is equal to
the sum of the mean bundle transit delay and the mean bundle
queuing delay. Hence

Ẽd = Q̃d + T̃d. (36)

G. BTM

The first objective of this case study is to show how bundle
release schemes for TH-VICNs can be designed in light of the
proposed traffic model in Section III. In fact, the aforemen-
tioned mathematical modeling of BBRS constitutes a sample
of a larger theoretical modeling and analysis framework that
pertains to more sophisticated bundle release schemes. In addi-
tion, the second objective of this cases study is to highlight the
impact of the underlying traffic model on the performance of
such bundle release schemes. For this purpose, in this section,
a benchmark traffic model (BTM) is borrowed from [40].
Under BTM, vehicular speeds are assumed to be uniformly
distributed in the range [Smin;Smax]. In addition, the corre-
lation between the macroscopic vehicular traffic parameters
(i.e., speed, density, and flow) is neglected. See [40] for more
details about BTM. In addition, note that the aforementioned
conducted analysis of BBRS can easily be refined to fit with
BTM. However, to focus on the main objective of this case
study, these refinements are omitted.

H. Simulations and Performance Evaluation

To highlight the impact of traffic models on the performance
of bundle release schemes, BBRS, which was adopted in this
case study, will be tested using the two traffic models SFTM
and BTM. In particular, a discrete-event simulation framework
is developed to examine the performance of BBRS-SFTM and
BBRS-BTM in the context of the sample TH-VICN shown in
Fig. 7. The adopted performance metrics are given as follows:
1) the mean queuing delay; 2) the mean transit delay; and 3) the
mean end-to-end delay.

1) Simulator’s Input Parameters Values: BBRS-SFTM is
tested under free-flow traffic conditions that correspond to ve-
hicular density values ρv in the range of 0.01–0.07 (in vehicles
per meter) and flow rate values µv in the range of 0.5–2.5 (in
vehicles per second; or, equivalently, a mean vehicle interarrival
time I ∈ [4; 20] s). The typical IEEE 802.11 protocol is used
for SRU-to-vehicle communication, and vice versa, with a data
rate of 1 Mb/s. The source is assumed to have a coverage
range LAB = 200 m, and the source–destination distance is
LSD = 20000 m. The bundle arrival rate was taken to be λ =
1 bundle/s, which ensures a fairly heavy offered data load to
the source. The bundle size is assumed to be fixed and equal to
the maximum transmission unit (MTU), i.e., 1500 B. Following
the guidelines in [34], k = 0.3, and m = 3. The same settings
apply for BBRS-BTM, except that, for BTM, vehicle speeds are
uniformly distributed in the range [10, 50] m/s.
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Fig. 9. Performance evaluation of BBRS-SFTM and BBRS-BTM. (a) Mean bundle queuing delay. (b) Mean bundle transit delay. (c) Mean bundle end-to-end
delay.

2) Discussion of Results: The aforementioned delay metrics
were evaluated for a total of 107 bundles and averaged over
multiple simulator runs to ensure the realization of a 95%
confidence interval.

Fig. 9(a)–(c) plots the theoretical mean bundle queuing, tran-
sit, and end-to-end delays achieved by BBRS-SFTM concurrent
with their corresponding simulated counterparts. Moreover,
these figures contrast the different delay performances achieved
by BBRS-SFTM to their corresponding performances achieved
by BBRS-BTM. These figures constitute tangible proofs of the
validity of the proposed mathematical analysis of BBRS based
on SFTM and the high accuracy of the established simulation
framework.

Fig. 9(a) plots the mean queuing delay achieved by BBRS-
SFTM and BBRS-BTM. Both curves are decreasing functions
of the vehicular density. In fact, a low vehicular density implies
that the vehicular traffic is very light or, alternatively, the vehi-
cle interarrival time is large. Consequently, after completing the
transmission of an arbitrary bulk of bundles, the source SRU
is less likely to readily find another vehicle within its range.
Hence, it will have to wait for the arrival of the next vehicle
to proceed to the release of the next bulk. This additional
waiting time contributes to the increase of the mean bundle
queuing delay. In contrast, as the vehicular density increases,
the vehicular traffic flow increases. Thus, the source SRU’s busy
period tends toward continuity as it becomes more likely to
readily find vehicles in range and hence continuously release
one bulk after the other. Under such conditions, the mean
queuing delay decreases.

Now, notice the impact of the traffic model on the queuing
delay performance of BBRS. Although the mean queuing delay
that was experienced by bundles under BBRS-SFTM is on the
order of a couple of seconds, the mean queuing delay under
BBRS-BTM is on the order of tens of seconds. In fact, under
BBRS-BTM, vehicle speeds are uniformly distributed within a
specific range for all values of the vehicular density. Therefore,
a source SRU is equally likely to select a fast or a slow vehicle.
Fast vehicles will reside less in the range of the source and
have reduced bundle admission capabilities. Consequently, the
source SRU will release to those vehicles a mean number of
bundles that are smaller than to slow vehicles. Hence, the mean
number of accumulating bundles in the queue will increase,
and so will the mean queuing delay. In contrast, SFTM re-
flects the realistic behavior of vehicular traffic where vehicle

speeds decrease as a function of vehicular density. In fact, as
the vehicular density increases, the minimum and maximum
speeds will decrease and become closer to each other. In other
words, it is observed that, as the vehicular density increases, the
range of speeds at which vehicles navigate becomes narrower
shifts to the left and become more biased toward lower speed
values. As a result, vehicles will reside for extended periods
of time within the range of the source SRU, where the latter
can release remarkably bigger bulks. Consequently, the mean
number of queuing bundles will decrease, and so will the
mean queuing delay. This case explains the large difference be-
tween the queuing delays experienced under BBRS-BTM and
BBRS-SFTM.

Fig. 9(b) contrasts the performance of BBRS-SFTM to the
performance of BBRS-BTM in terms of the mean transit delay.
Because, under BBRS-BTM, vehicle speeds are uniformly
distributed over a fixed interval for all vehicular densities, it
follows that, irrespective of the vehicular density, the mean
speed of bulk transporters is constant and equal to the mean
of the chosen interval of speeds. This causes the mean transit
delay to become constant for all vehicular densities. However,
under BBRS-SFTM, at a low vehicular density, the mean speed
of bulk carriers is high. This explains the low mean transit delay.
However, the more the vehicular density will increase, the more
the speed of transporting vehicles will decrease. Hence, the
mean transit delay will increase.

Finally, Fig. 9(c) plots the mean end-to-end delay achieved
by BBRS-SFTM and by BBRS-BTM. This goes without saying
that the mean end-to-end delay’s behavior is clear, because it is
the sum of the mean queuing delay and the mean transit delay.

VI. CONCLUSION

This paper has considered a roadway segment [AB]
that experiences free-flow vehicular traffic. A comprehensive
overview of the macroscopic vehicular traffic dynamics consti-
tuted the core of a novel and realistic mathematical framework
where an observed roadway segment is modeled using an
M/G/∞ queuing system. Closed-form expressions for this
model’s characteristic parameters were developed. Extensive
simulations were conducted to examine the validity and ac-
curacy of the presented model. Finally, a simple case study
was presented, with the purpose of providing more insight into
the practical application of the proposed model in a real-life
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TH-VICN. Note that the model proposed in this paper has a
generic fundamental significance that is beyond the specific
context of TH-VICNs. Indeed, it can be applied to general
systems. Due to this generality, any further results that can be
derived have a potential significance for other fields.
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