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Optimal Supercharge Scheduling of Electric
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Decentralized Methods
Ribal F. Atallah, Chadi M. Assi , Wissam Fawaz , Mosaddek Hossain Kamal Tushar , Member, IEEE,
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Abstract—The contemporary problem of scheduling the
recharge operations of electric vehicles (EVs) has gained a
lot of research attention. This is particularly true given the
governmental and industrial confidence in a bright future for EVs
accompanied with the widespread installation of an enormous
number of charging stations across the world. As such, this paper
addresses the delay-optimal scheduling of charging EVs at several
charging stations (CSs) each with multiple charging outlets. At
first, a centralized optimization framework is formulated using an
integer linear problem (ILP) that accounts for the delayed arrival
of EVs to CSs and the randomness in the requested recharge
time interval. Simulation results showed the efficacy of the ILP
model when compared to naive as well as sophisticated scheduling
heuristics. Next, motivated by the scalability issues of the ILP
model, this paper then proposes a distributed game-theoretical
approach where each EV communicates with its selected CS and
iterates on modifying its strategy until all EVs converge to selecting
an appropriate CS that minimizes their waiting times for receiving
services. The distributed game-theoretical approach recorded
promising results especially when compared to the well-known
shortest job first scheduling algorithm. Further, unlike the other
approaches, which normally are centralized and suited for offline
scheduling, the game-based method is suited for online scheduling
since it played at anytime a batch of EVs requests charging
services. The running time of the game is remarkably small and
outperforms all other heuristics and its convergence to Nash
equilibrium is guaranteed after only small number of iterations.

Index Terms—Linear optimization, electric vehicles, scheduling,
game theory.
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I. INTRODUCTION

A. Overview

ACCORDING to statistics recently published by the Inter-
national Energy Agency (IEA) [1], the transport sector

currently accounts for about 23% of total energy-related CO2
emissions. This is expected to increase by nearly 50% in 2030
and more than 80% by 2050, especially in the absence of ap-
propriate measures. Globally, resources have been devoted to
Electric Vehicles (EVs) development since the energy crises of
the 1970s; however, in that time, only small markets have de-
veloped. Presently, a renewed political push for EV deployment
is linked to climate change abatement and energy conservation
[2]. EVs appear to have a bright future, since they promise,
among other benefits, greenhouse gas emission reduction and
independence from fossil fuels. Several national governments
have set ambitious targets for EV deployment, particularly the
U.S. and Canada [3]. Also, many authorities joined forces with
the electric automotive industry and introduced strong incen-
tives to promote EVs, which include i) exemption from import
and value added tax, b) free toll roads, c) free parking spots and
d) privileged access to bus lanes. However, the inconvenience
of EVs recharging as well as their limited range are two main
factors that have been delaying the EVs’ wide market penetra-
tion. In fact, the process of charging/recharging an EV’s battery
to capacity requires a significantly larger amount of time (i.e. in
the order of hours) than the conventional refuelling of an Inter-
nal Combustion Engine (ICE)-driven vehicle’s reservoir, [4]. At
this point, several major factors limit the widespread evolution
of the EV industry, including: a) range anxiety which is the fear
that a vehicle has insufficient range to reach its destination, b)
lack of state-sponsored signs for EV charging stations hence
creating the delusion that there is not enough charging facilities,
and c) limited availability of fast chargers along major high-
ways. Recent reports are highlighting the market growth in both
EV batteries and stationary energy storage as the confluence
of regulatory policy, technological capabilities, and business
models continue to drive interest forward. The introduction of
mass-market battery EVs with ranges of 150 to 200-plus miles
has significant implications for the EV market. During the next
few years, significant growth is further expected, particularly in
the North American EV market. That growth will be driven by
sales of the Tesla S and X Models, the second-generation Volt,
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Fig. 1. The expansion of Tesla supercharging sites.

and by the introduction of the Chevrolet Bolt 200-mile range
battery electric vehicle. Given the growing popularity of EVs,
it is anticipated that future garages (such as the parking lots
for office buildings or business districts) will provide fast EV
charging services. In point of fact, and as illustrated in Fig. 1, EV
industrial leaders, and particularly Tesla Motors, have already
started expanding their supercharging services as they consider
this step the key to their future plans. This expansion is however
accompanied by a critical challenge presented by the increasing
number of Tesla users requesting charging services especially
during peak hours. Now, the EV research studies have reached
a consensus that EV charging should be controlled to avoid
distribution congestion and higher peak-to-average ratios [5].
The increasing need to satisfy growing EV charging demands
gives rise to a contemporary challenging problem of schedul-
ing EVs on charging stations. In fact, a proper EV charging
schedule, especially for urgent charging stations supporting fast
EV charging, can enhance the utilization of charging facilities,
increase their expected revenues and increase the customers’
satisfaction; hence, promoting the EV industry. Now, without a
proper coordinated charging technique, either the EV will ex-
perience long waiting times at the charging station or the latter
may be forced to decline the service requests. These negative ef-
fects may severely affect the customer satisfaction and result in
revenue losses for the charging stations. To mitigate these neg-
ative effects, it is crucial to design efficient admission control
and scheduling algorithms for EV charging stations. As such,
this work addresses the problem of EV scheduling on charging
stations that provide fast charging in a unidirectional grid-to-
vehicle (G2V) power transfer scenario. Note that, an EV can
also discharge its battery to the grid for reasonable incentives
[6], [7]. However, this is outside the scope of this current work.
Ideally, as illustrated in Fig. 2, neighbouring charging stations
are connected to a central intelligent agent which is aware of all
current and future EV locations, destinations and charging de-
mands, and thus, plans the scheduling of EVs on designated CSs
accordingly. In point of fact, the full realization of the next gen-
eration wireless communications leverages smart city solutions
built on 5G infrastructure [8], hence, allowing for connected
EVs to communicate with each other as well as with a back-

end agent with negligible delays for the purpose of generating
significant EV scheduling efficiencies.

The primary objective of this work is to allocate CSs to EVs
requesting charging services such that the maximum EV waiting
time at the charging station is minimal. For this purpose, an op-
timization framework is first proposed that serves to realize an
optimal offline scheduling policy using Integer Linear Program-
ming (ILP). The latter model is then compared with simple as
well as complex scheduling heuristics. Due to the exponential-
time complexity of the optimal allocation method, i.e., ILP
model, as well as the unavailability of knowledge about future
EV recharge requests, this work then establishes a distributed
game-theoretical approach where each EV is aware of the sta-
tus of each neighbouring CS and hence, strategically chooses
at which CS to recharge in such a way that minimizes the total
EV waiting times. This work analyses the various properties of
the resulting game, in particular, the existence of a generalized
Nash equilibrium is shown and also, the EV selection behaviour
is discussed. As such, it becomes clear that coordinated charg-
ing is an effective EV charging plan which serves to improve
the overall system energy utilization and avoid overloading on
EV charging stations. In fact, the proposed game-theoretical ap-
proach enables the system to adapt to time-varying conditions
such as arrival of new EVs with recharging requests.

B. Novel Contributions

1) In an attempt to address the emerging problem of allo-
cating EVs on CSs, this work examines and accounts for
the road topology, the vehicular mobility model, and the
EVs’ required State-of-Charge (SoC) at their respective
destinations. With the objective of minimizing the maxi-
mum EV waiting time at a CS, this paper first formulates
a mixed ILP model that meets the EVs’ requirements.
The optimal solution of the underlying scheduling prob-
lem assigns EVs to CSs that fulfill their charging requests
in the least amount of waiting time. The results obtained
by solving the ILP model serve as an optimal benchmark
for comparison purposes given the ILP’s time complexity,
especially with large input instances.

2) This work conducts a performance analysis of the formu-
lated ILP model. For this purpose, this work then pro-
poses and implements multiple simple as well as complex
heuristics that allocate EVs to corresponding CSs. In par-
ticular, random scheduling, closest to source/destination,
shortest/longest processing time algorithms were imple-
mented and their recorded results were compared with the
ILP model. By using this approach, observations about
the EVs’ average and maximum waiting times and time
complexity to realize a scheduling plan are recorded.

3) In order to overcome the limitations of a centralized
scheduling algorithm (particularly the time to solve the
ILP), the interaction between the EVs is modelled as a
non-cooperative pure strategy game. The structure of the
game is common knowledge of all the EVs, but each EV
knows only its own utility (revenue) function. The Bayes
Nash equilibria of this game establish the strategies (in
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Fig. 2. Scheduling EV recharge.

terms of expected utilities) that the EVs should adopt
while competing for the CSs. In a non-cooperative game,
all players (i.e., EVs) are assumed to be rational and each
EV strategy is known to all other EVs, hence the Nash
equilibrium is realized.

4) Using extensive simulations, this work finally discusses
the performances of the presented scheduling algorithms.
Based on the obtained results, this paper highlights the ef-
ficacy of the game-theoretic model for realizing successful
scheduling plans for recharging EVs.

C. Paper Organization

Section II presents a brief overview of the related work. A
description of the system model is presented in Section III.
Section IV lays out two centralized offline models. Section V
presents the distributed game-theoretical approach. The simu-
lation setup and the proposed scheduling heuristics used for
comparisons are presented in Section VI. The performances of
the two ILP models as well as the game model are examined and
compared to the proposed scheduling heuristics in Section VII
and we conclude in Section VIII.

II. RELATED WORK

In [5], a comprehensive survey of economy-driven schemes
for EV charging was provided. The authors highlighted impor-
tant questions that should be addressed when scheduling the
charging of EVs, including: a) how charging stations are speci-
fying their prices, b) what the mobility models of EVs are and
c) the direction of power flow. The authors of [5] also differen-

tiated between the static and dynamic scheduling approaches,
where, in the former, scheduling decisions are based on a snap-
shot of the system regardless of impacts of future variations,
and in the latter, the uncertainty of future events should be taken
into account.

In [9], the authors shed the light over an inherent uncertainty
that governs the charging behaviour and demands of EVs in a
certain regional transmission network or local distribution net-
work. Such uncertainty originates from different random factors
such as the number of EVs being charged, these EVs voltage
and current levels as well as their power battery start/end and
capacity, the charging time duration and so forth. Given this,
the authors of [9] conducted Probabilistic Power Flow-based
(PPF) analysis in order to capture and quantify the impact of
EV charging on the power grid.

In addition to the above, the work of [10] and [11] shed the
light on the power system overloading problem especially at the
distribution system level resulting from the widespread adoption
of EVs in the transportation system and their consequent bur-
dening charging loads. This problem becomes even more crucial
when fast charging is demanded. This is especially true since
this latter required much higher power than regular charging. To
this end, in an attempt to work around power system overload as
well as to improve energy utilization while avoiding additional
deployment costs, efficient load management and distribution
strategies are required. In particular, the work of [10] and [11]
revolved around coordinated EV charging schemes through-
out which EVs receive energy from charging stations through
grid-to-vehicle (G2V) transfers. Nevertheless, G2V is strictly
confined to the technical limitations of the power system and
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may not be able to cope with elevated charging demands. At this
point, Vehicle-to-Vehicle (V2V) energy swapping presents itself
as a promising solution, [12]. Explicitly, V2V energy swapping
takes place through direct energy transfer among EVs at an ag-
gregator that is connected to the grid and controlled by the grid
operator for the purpose of offloading heavy power demands,
[13]. This allows for improving the EV charging efficiency with
minor infrastructure modifications.

Kuran et al. [14] proposed a centralized EV recharge schedul-
ing system for smart parking lots. Their study considered two
types of EV arriving patterns, being regular and irregular. Regu-
lar EV arrivals are associated with daily commuters that follow
the same journey pattern, whereas, irregular EV arrivals are as-
sociated with arbitrary new guests requesting a parking spot to
recharge their EVs. The authors formulated optimization prob-
lems that either maximize the revenue of the parking lot owner
or maximize the percentage of EVs with a fulfilled recharge
request. The reported results in [14] were compared to First-
Come-First-Served (FCFS) and Earliest-Deadline-First (EDF)
scheduling algorithms. In [15], the authors studied scheduling
the charging of multiple EVs aiming to maximize the profit
of the charging station under time-of-use (TOU) pricing. The
authors developed a multi-charger framework considering both
the customers’ and charging station’s interests. The authors of
[16] identified the critical challenges and research problems as-
sociated with the high EV mobility, vehicle range anxiety, and
power systems overload. Then, the authors investigated innovat-
ing charging and discharging potentials for mobile EVs based
on real-time information collections (via VANETS and/or cel-
lular networks). The authors of [17] considered delay-optimal
charging scheduling of the electric vehicles EVs at a charging
station with multiple charge points where the uncertainty of
the arrival of the EVs, the intermittence of the renewable en-
ergy, and the variation of the grid power price are taken into
account and described as independent Markov processes. The
work in [18] studied the charging policies in smart microgrids
with EVs and renewable energy sources. Knowing the states
of the renewable energy sources and the number of charging
EVs, an optimal charging policy was obtained to maximize the
energy utilization. The authors of [19] addressed the problem of
grid-to-vehicle energy exchange and proposed a game theoretic
approach to maximize the revenue of the smart grid while al-
lowing the electric vehicles to choose the best charging strategy
that optimizes the tradeoff between the battery charging and the
associated cost. More generally, the work in [20] proposed a
demand-side management method that used ILP and game the-
ory in order to optimize the consumption schedule and satisfy
both the user preference as well as the specific requirements of
all individual appliances.

Major concerns for operators of Fast Charging Stations (FCS)
are highlighted in [21]; those being: a) profitable operation of
the FCS and b) the FCS’s high Quality of Service (QoS) to
the arriving Electric Vehicles (EVs) in terms of throughput and
waiting time. Then, the authors shed the light over the impor-
tant fact that during constant current charging, whenever an
EV’s battery reaches its threshold value, the charging mode
switches to constant voltage charging, which, in turn, exhibits
an exponential current decrease as a function of the EV’s battery

State-of-Charge (SoC). Such a phenomenon leads to a signif-
icant increase in the charging time whenever higher SoCs are
desired and, hence, lower revenues for FCS operators as a con-
sequence of the increased EV service time during which the EV
charges less energy. In this light, the authors of [21] derived
an SoC dependent charging power function and formulated an
accurate relation between the requested charging energy and
its required charging time. The authors adopted a strategy of
limiting the requested SoC by an EV in order to increase the
revenue of the FCS and accordingly, they computed an optimal
SoC request limit that maximized the FCS revenue.

III. SYSTEM MODEL

This paper considers the scenario illustrated in Fig. 2, where
a number of 15 EVs, present within a certain geographical area,
wish to recharge their batteries such that, upon arriving to their
respective destinations, their batteries are above a desired State-
of-Charge (SoC). As depicted in Fig. 2, the 15 EVs (illustrated
as red vehicles) have entered the considered network from any
one of the 8 entry points and shall exit the network from any
one of 8 exit points. The considered network embraces 7 charg-
ing stations each located at a road intersection, and an EV may
be scheduled to charge on any suitable CS knowing that its
current SOC allows it to reach the chosen CS. Note that the
location of the CSs does not affect the problem formulation nor
the reported results in this paper since changing the location of
the charging station is an input parameter for any scheduling
method. The considered traffic network is composed of three
different segment types of long length, dL , medium length, dM ,
and short length, dS . Now, since multiple potential options are
viable to recharge a user’s EV, CSs may quickly become un-
manageable if handled improperly. Hence, we advocate that
EV users are encouraged to seek assistance in order to find the
best charging station, which provides the fastest service. As a
result, a centralized infrastructure management system would
certainly allow for better utilization of the available CSs. Now,
for an EV to transfer its current status (i.e., current SoC, required
SoC at destination, range and battery capacity) to the central-
ized scheduling agent, there are two supporting communication
frameworks. Indeed, as mentioned earlier, as the wireless com-
munication technology cruises towards its 5th generation, smart
cities will soon support delay-minimal communications among
vehicles and between vehicles and infrastructure devices. On the
other hand, EVs may exploit VANET platforms that are exclu-
sively designed for information exchange among highly mobile
vehicles and infrastructure units in a multi-hop fashion, where
the required real-time information can be delivered efficiently
via short-range V2V and V2I communications.

An EV issues a recharge request once its battery SoC drops to
a certain threshold. At this point, the EV user forwards his/her
EV’s current characteristics being: 1) the EV’s SoC, 2) the EV’s
destination, 3) the EV’s battery capacity and finally 4) the de-
sired SoC at the destination.1 The central processing agent de-
fines time windows for receiving the charging requests from the

1EV users may or may not have access to a charging outlet at their final
destination whether it is their work or home. Therefore, the desired destination
SoC differs from one EV to the other.
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EVs before optimizing the charging schedule. The EVs which
miss the current time slot have to wait for the next time slot to
submit their requests. Now, once the centralized agent, knowing
the current statuses of all neighbouring CSs, collects all charging
requests from the EVs and accordingly, schedules their charg-
ing process in such a way that minimizes the maximum waiting
time an EV spends at a CS. Note that, it is assumed herein that
all EVs requesting a charging service are known to the schedul-
ing discipline, and no EV is allowed to start charging at a CS
without being scheduled.2

Now, the scheduling agent should account for two important
constraints when scheduling an EV on a CS: a) an EV should
have enough residual battery power to reach to the CS it is
scheduled on and b) an EV should recharge its battery enough
to reach its destination with a SoC above a requested level.

It is worthwhile noting that, this work does not consider the
monetary cost/value charged by the CSs for charging EVs. In
fact, this work assumes identical pricing at all CSs and hence
concerned with the actual demand, supply and utilization of
energy by EVs and how different scheduling algorithms for
charging of EVs on nearby CSs affect the trip performance of
these EVs. The cost optimization arising from different pricing
at the charging stations is however considered as future work.

The next section presents a mathematical formulation for this
problem with the objective to realize a scheduling policy that
minimizes the EV waiting times at charging outlets.

IV. CENTRALIZED OFFLINE PROBLEM FORMULATION

In this section, it is assumed that a centralized intelligent
agent is already aware of all current and future EV recharging
requests. The formulation of the centralized offline optimization
model serves for the realization of an optimal scheduling policy.

Consider the scenario illustrated in Fig. 2. Assume that, over
a time period of length T , a total of I EVs request to recharge
on one of the available J neighbouring charging stations in the
network. Assume that each CS j has a number of Lj charging
outlets that can be used. In this optimization framework, assume
that the time axis is divided into N slots of length τ each. Let
xij be a binary decision variable defined as follow:

xij =

{
1, if vehicle i is assigned to CS j

0, otherwise
(1)

where 1 ≤ i ≤ I and 1 ≤ j ≤ J .
Let xt

ij be a binary decision variable defined as follow:

xt
ij =

{
1, if i is charging at j during t

0, otherwise
(2)

where 1 ≤ t ≤ N . Note that xij decides whether a vehicle is
assigned to a charging station. A vehicle, however, may queue
behind other vehicles before it actually is served.

Assume that the charging rate of the considered charging
stations is constant, and denoted herein as ζ. Let Pij be the
amount of power vehicle i has to recharge at charging station

2It is true that the event of an EV arriving to a CS without an assigned charging
time is indeed a likely one, however it is outside the scope of this current work
and is being accounted for in the extension of this current problem.

j. Also, let Δij be the time required for vehicle i to recharge
Pij at charging station j. Let yt

ij be a binary decision variable
defined as follow:

yt
ij =

{
1, if i starts charging at j during t

0, otherwise
(3)

Let SOCi represent vehicle i’s State of Charge (SOC) at the time
it submits its recharging request. SOCi is EV i’s percentage of
available battery power. Let Ei = SOCi × Ci be the current
amount of energy (kWh) stored in the EV i’s battery at the
time when i submits its recharging request, where Ci is EV i’s
battery capacity. Also, assume that EV i consumes an amount of
energy LECij = SOCij × Ci (LEC stands for Lost Energy until
Charge) in order to reach CS j, where SOCij is i’s consumed
battery percentage to arrive at charging station j. Let TCi be the
percentage SOC target required by vehicle i at its destination,
and let LEDij (LED stands for Lost Energy to Destination)
denote vehicle i’s consumed power from Charging station j to i’s
destination. Finally, let tij be the time at which vehicle i arrives
to station j, and zij be the time at which vehicle i starts charging
at CS j (zij ≥ tij ). The objective of this optimization problem is
to minimize the time spent by EVs waiting at charging stations.
As such, the problem formulation is given next:

Min
∑

j

(
zij − tij + Δij

)
xij ∀i ∈ I

subject to
∑

j

xij = 1 ∀i ∈ I (4)

∑
i

xt
ij ≤ Lj ∀j ∈ J, t ∈ T (5)

∑
t

xt
ij ζ ≥ Pijxij ∀i ∈ I, j ∈ J (6)

xij ≥ xt
ij ∀i ∈ I, j ∈ J, t ∈ T (7)

xij ≤
∑

t

xt
ij ∀i ∈ I, j ∈ J (8)

∑
j

∑
t

yt
ij = 1 ∀i ∈ I (9)

∑
t

yt
ij ≤ xij ∀i ∈ I, j ∈ J (10)

∑
t

xt
ij = Δij xij ∀i ∈ I, j ∈ J (11)

xt ′
ij ≥ yt

ij ∀i ∈ I, j ∈ J, t ∈ T, t′ ∈ T , and

t ≤ t′ ≤ t + Δij (12)

yt
ij = 0 ∀i ∈ I, j ∈ J, t ∈ T , where t ≤ tij (13)

TCi × Ci ≥ SOCi × Ci−∑
j

(LECij − Pij + LEDij × Ci)xij ∀i ∈ I (14)

zij =
∑

t

yt
ij × t ∀i ∈ I, j ∈ J (15)
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Equation (4) forces a vehicle i to be assigned to a single CS.
Equation (5) allows for a single vehicle to charge at CS j at a
time. Equation (6) makes sure that EV i acquires its requested
recharge power at CS j. Equations (7) and (8) does not allow an
EV to recharge on any CS if it was not assigned to it. Equation
(9) makes sure that an EV starts recharging only once. Equation
(10) makes sure that the EV only starts its recharging process
at the designated CS. Equations (11) and (12) forces EV i to
charge on CS j for a consecutive time of Δij . Equation (13)
does not allow an EV i to start recharging on CS j before it
actually arrives to it. Equation (14) makes sure that an EV’s
SOC at destination is larger than a pre-defined threshold taking
into account the power lost during the commute and the power
added in the charging process. Finally Equation (15) identifies
the time slot during which vehicle i starts charging at CS j.
Since this ILP model’s objective is to minimize the sum of
EV waiting times at CSs, it will be denoted as Min-Sum ILP
(MS-ILP) throughout this paper. It is worthwhile noting that
the installation of a charging station is subject to the code of
conduct and agreement signed by both the station owner and
the utility company, which utilizes methods for voltage stability
such as voltage regulation and VAR compensator [22] in order
to avoid voltage fluctuation and instability of the distribution
network. As such, the voltage requirements are transparent to
the charging algorithm and hence the above ILP model omits
any constraint related to the voltage in the distribution network.

Now, another interesting objective for the ILP could be min-
imizing the maximum EV waiting time at a charging station.
The resolution of the min max problem helps mitigating the
maximum waiting time and frustration of unfortunate EVs that
arrive to CSs at peak hours. The Min-Max ILP model will be
denoted by MM-ILP in the sequel. Let Γ be the maximum EV
waiting time at a CS. It is given by:

Γ ≥
∑

j

(
zij − tij + Δij

)
xij ∀i ∈ I (16)

The objective function of the MM-ILP becomes:

Min Γ (17)

We should note that in both of the above ILP models, some
constraints may contain non linear terms (namely, a product
of a binary variable and a real value, e.g., in (14)), whose lin-
earization is straight forward and omitted for brevity. Now, the
ILP model’s most limiting disadvantage is its time required to
solve large-scale problems, which is a fact illustrated in Fig. 5 in
Section VII. Consequently, this paper opts to solve the schedul-
ing of EV charging more efficiently, where the problem is de-
composed into several subproblems, particularly, one problem
per vehicle, and the solution approach is a game theoretic one,
as explained in the next section.

V. GAME THEORETIC APPROACH

The distributed non-cooperative game starts as each EV i
selects one of the CSs it can reach given its current SOC.
The EVs (i.e., players in this game) will autonomously choose
their strategies which result in the least service time given the

latest network characteristics. Each EV will then communicate
its selected strategy to the other players in this game. Recall from
Section III that each connected EV shall exploit the 5G infras-
tructure in order to communicate its selected strategy with negli-
gible latency. Once an EV becomes aware of the remaining play-
ers’ strategies, it then modifies its strategy based on this most
recent game status, and thereafter, the EV re-communicates its
updated strategy. EVs will repeatedly update and communicate
their strategies until the game reaches its Nash equilibrium state,
where neither of the EVs can further choose a better strategy
than its current strategy. Note that, once all players (i.e., the
EVs requesting charging services) establish their strategy that
is realized by the Nash equilibrium of the game, it becomes im-
practical to replay the game due to the arrival of a new EV that
is requesting a charging service. However, the newly arriving
vehicle may join the game in the next scheduling process.

Let Mi be the set of CSs which can be reached by EV i given
its location and current SOC, Mi ⊆ J . And let (vector) Si be
the EV i’s strategy (set of actions), which is given by:

Si = {xij |∀j ∈Mi} (18)

where, as defined in Section IV, xij is a binary variable which
becomes 1 if EV i decides to recharge its battery on CS j. As
such, xij becomes EV i’s pure strategy herein. Note that, in
order for a CS j to be considered in set Mi , EV i has to reach j
given its current SOC, thus satisfying the following condition:

SOCi × Ci − LECij ≥ 0;∀j ∈Mi (19)

Now, an EV i chooses a strategy by selecting a CS j to receive
its recharging service (see Fig. 3) at (

∑
j xij = 1), and hence

sets its binary decision variable xij accordingly while making
sure the following condition is satisfied:

TCi × Ci ≥ SOCi × Ci

−
∑

j

(LECij − Pij + LEDij × Ci)xij (20)

Equation (20) forces an EV i to choose a CS j from Mi which
provides a charging service that allows EV i to reach its final
destination with the required target SOC.

For an EV i to select an appropriate strategy, it forwards to CS
j, j ∈Mi , its tentative arrival time tij as well as the expected
amount of consumed energy along the way to j, LECij . Each
CS j then gathers |Aj | EV requests, where Aj is the set of all
EVs that can reach CS j, and sends to each EV i ∈ Aj its service
time (including wait time) on j. Denote by γij the computed
service time of EV i at CS j; then:

γij = wij + Δij , ∀i,∀j ∈Mi (21)

where wij and Δij are respectively the waiting time and charg-
ing duration of EV i at CS j.

Each CS j now maintains an ordered list of arriving times tij
and requested service duration Δij for all i ∈ Aj .

{(tij ,Δij , i)|∀i ∈ Aj} (22)

The CS j orders the EVs according to the following:

(tlj , Plj , l) < (tkj , Pkj , k) (23)
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Fig. 3. Flowchart for EV charging game.

where l �= k, l ∈ Aj , k ∈ Aj . The EVs l and k are ordered ac-
cording to Equation (23) based on the following set of rules:

tlj < tkj (24)

or

Plj < Pkj , when tlj = tkj (25)

or

l < k, when tlj = tkj and Plj = Pkj (26)

Upon receiving the request from the EV i, CS j determines
the position p of EV i (CS agent in Fig. 3) in its ordered list and
hence evaluates i’s total service time according to the following
equation:

γij = (tp−1j + Δp−1j − tp,j )δpj + Δij (27)

where wij = (tp−1j + Δp−1j − tpj )δpj . Note that δpj = 0
when (tp−1j + Δp−1j − tpj ) ≤ 0, and otherwise, δpj = 1.

During iteration r of the game, all CSs j ∈ J respond to the
EVs with their associated service times; then, each EV i selects,
during that particular iteration, the best strategy (see Fig. 3) that
chooses the CS that results in the minimum service time:

x∗rij = arg min
xi j

∑
j∈Mi

γr
ij × xr

ij (28)

Hence, the maximum payoff of EV i of an instance (iteration
r) of the non-cooperative game can be defined as:

σr
i (x∗rij , xr

−ij ) = B −min
∑

j∈Mi

γr
ij × xr

ij (29)

where B is a constant, and x∗ij is the best strategy for EV i
with respect to the strategies of all other EVs x−ij . The game
iterates until all participating EVs converge to selecting their
best strategy (see Fig. 3). This is known as the Nash equilibrium
state of the game, where the optimal payoff of EV i is:

σ∗i (x
∗
ij , x

∗
−ij ) = B −min

∑
j∈Mi

γ∗ij × xij ∀i ∈ I (30)

where x∗−ij is the optimal strategies of all players other than i
and σ∗i (x

∗
ij , x

∗
−ij ) ≥ σi(x∗ij , x−ij ) ∀i ∈ I .

Lemma 1: The EV scheduling game with a finite number
strategies converges to a Nash Equilibrium in a finite number of
iterations.

Proof: In the above EV scheduling game, the action of each
EV is xij , which is finite since xij ∈ {0, 1}. The number of
available stations (which translate to feasible actions/strategies)
is also finite. In other words, the strategy set of each EV is fi-
nite and non-empty i.e., Si = {xij ,∀j ∈Mi}. Hence, it can be
shown that the number of plays or games is also finite since, in
each iteration, an EV chooses a single charging station j such
that σ(xij , x

∗
−ij ) ≥ σ(xij ′ , x

∗
−ij ), where j′ �= j. Furthermore,

An EV will not change its strategy unless the payoff (30) im-
proves with a new strategy. At each iteration, the strategy of
all other players are known, therefore an EV can find the best
CS, which leads to the optimal payoff ((30)). Consequently, the
game converges to a Nash equilibrium in a finite number of
iterations. �

VI. SIMULATION SETUP AND HEURISTICS

This section presents the simulation setup needed to resolve
the ILP models presented earlier using the network topology il-
lustrated in Fig. 2. Furthermore, the scheduling heuristics whose
results are compared to the ILP and game theoretic approaches
are also laid out in this section. As illustrated in Fig. 2, J = 7
charging stations are considered. Moreover, the following dis-
tance values are used for the short, medium, and long distances
portrayed in the figure: a) dS = 1 Km, b) dM = 2 Km, and
c) dL = 3 Km. A vehicle i enters the considered traffic net-
work through one of the 8 entry points illustrated in Fig. 2 with
a random initial state of charge SOCi that is in the range of
40% to 80% of the vehicle’s battery capacity, which is assumed
to be 80 KWh. During its presence within any roadway seg-
ment, a vehicle may decide to initiate a charging request. A
vehicle must have enough power to reach the selected charging
station assuming that a power loss of 0.43 kWh/km is consid-
ered. At a charging station j, the charging rate is 16 KW per
hour. The individual vehicle speeds are independent and iden-
tically distributed random variables with values in the range of
[Vmin;Vmax]. Particularly, vehicles’ speeds are generated from a
truncated Normal distribution [23] and assumed to be constant
for the entire duration of the navigation of an arriving vehicle
to the assigned charging station. Realistic mobility traces were
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Algorithm 1: Vehicle With Shortest Service Time First
(VSSTF) Heuristic.

function VSSTF (I , J)
for j ∈ J do � populate sorted list of vehicles per
station

Create empty priority list Lj � vehicles sorted by
Δij

for i ∈ I do
if (i can reach j) then

Calculate service time Δij of i at j
Insert i into Lj

end if
end for

end for
repeat � assign vehicles to stations

for j ∈ J do
if (Lj is not empty) then

i← remove vehicle with smallest Δij from
Lj

Assign i to j
for k ∈ J such that k �= j do

Remove i from Lk

end for
end if

end for
until All Lij lists are empty

end function

obtained via SUMO [24] with the objective of evaluating the
impact of the different traffic theoretic parameters on the vehi-
cles’ individual speeds. It is important to note in this regard that
vehicles entry and exit points are generated randomly within the
investigated topology. Last but not least, a time slot length of 5
minutes is used.

Armed with these different system parameter values, the ILP
models were solved using CPLEX, a state-of-the-art commercial
solver. It is important to note that the resolution of the ILP
models via CPLEX is preceded by a pre-processing step and
followed by a post-processing one. On the one hand, the aim of
the pre-processing step is to determine the values of the input
parameters underlying the formulated ILP models. On the other
hand, the post-processing step aimed at processing the output
decision variables resulting from the ILP resolution step in such
a way so as to calculate both the maximum station waiting time
as well as the average station waiting time.

Notice that the above-described problem is similar to the well-
known problem of scheduling jobs on parallel machines [25].
In fact, the latter problem is an instance of this current problem
once the time required for an EV to reach any CS becomes
zero. Now, since scheduling jobs on parallel machines is an
NP-hard problem [26], therefore, our problem is also NP-hard.
Therefore, this paper proposes a number of heuristic strategies
that schedule the service of arriving EVs on one of the existing
charging stations. The results obtained from solving the ILP
models are compared to the following heuristic approaches:

� Closest to Source (CTS) heuristic: assigns an arriving ve-
hicle to the charging station that happens to be the closest
to a vehicle’s entry point.

� Closest to Destination (CTD) heuristic: assigns an arriving
vehicle to the charging station that is found to be the nearest
to a vehicle’s exit point.

� Random Station Selection (RSS) heuristic: dispatches an
arriving vehicle to a randomly selected charging station.

� Vehicle with Shortest Service Time First (VSSTF): creates
sorted lists of vehicles per station, where vehicles are ar-
ranged in an ascending order of their service times. Then,
a round robin scheduling of vehicle service is performed
among the stations whereby the vehicle with the shortest
service time is assigned to the charging station in each
round.

� Vehicle with Longest Service Time First (VLSTF): op-
erates similarly to VSSTF but unlike VSSTF assigns the
vehicle with the longest service time to the charging station
in each iteration of the round robin scheduling approach.

Given that the CTS, CTD, and RSS heuristics are straight-
forward and self-descriptive, a pseudo-code description of the
VSSTF heuristic is presented in Algorithm 1 below. It is im-
portant to note that the VLSTF algorithm operates similarly to
VSSTF with the only difference being that the vehicle with the
longest service time is selected.

Generating mobility traces using SUMO, solving the ILP
using CPLEX, and simulating the whole scenario under the
above-described heuristics were performed on an Intel Core i7-
4790 3.6 GHz CPU powered machine with 16.0 GB of RAM.
It is important to note the following with respect to the results.
Each data point represents the average of multiple runs with
different initial conditions in order to achieve the highest degree
of accuracy in terms of the reported values.

VII. RESULTS AND DISCUSSIONS

A. ILP Results and Discussion

The results of the ILP models as well as those resulting from
the heuristic scheduling algorithms are reported in Fig. 4. In par-
ticular, Fig. 4(a) plots the maximum waiting time as a function
of the number of vehicles whose services need to be scheduled.
This performance metric indicates the worst service experience
an EV driver may witness, which could be indicative of the
provided quality of service. Indeed, our min-max model is de-
signed to improve this overall experience, by forcing the max
waiting time to be as low as it can possibly be. Our results
(shown in the figures) clearly reveal the ability of the MM-ILP
model to minimize this maximum waiting time for the vehi-
cles as compared to the heuristic algorithms. One also observes
based on the results that the proposed heuristic algorithms can
be classified into two categories, namely naive and good ones.
While CTS, CTD, and RSS belong to the naive category, the
VSSTF and VLSTF heuristics can be categorized as being good
algorithms. This classification is driven by the fact that VSSTF
and VLSTF consistently and for different values of I achieve
better performance in terms of the maximum waiting in com-
parison to the CTS, CTD and RSS heuristics. For instance, it
can be see from Fig. 4(a) that when the number of vehicles is
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Fig. 4. Performance evaluation of the ILP models. (a) Max WT versus N.
(b) Max WT versus L. (c) Avg WT versus N.

40, the MM-ILP model reduces the max waiting time by more
than 20 times slots (100 minutes) over the best heuristic method
(i.e., a reduction of 33% in max waiting time is obtained for
this instance). Finally, one might be surprised by the fact that
CTS and CTD have a worse performance when compared to the
RSS. Hence, note that it is observed that for larger number of
vehicles, CTS and CTD have the tendency to group together a
larger number of vehicles at the same station, especially those
vehicles whose sources/destinations are close to the same charg-
ing station. This explains the relatively higher maximum waiting
time resulting from CTS and CTD as compared to RSS, which
inherently distribute arriving vehicles evenly among charging

Fig. 5. CPU run time.

stations reducing thus the size of vehicle clusters per station,
and hence the observed maximum waiting time.

Fig. 4(b) studies the impact of the number of charging out-
lets per station on the resulting maximum waiting time. Indeed
similar conclusion can be drawn, further underlining the su-
periority of the MM-ILP model when it comes to improving
the overall quality of service (i.e., reducing the maximum EV
waiting time). The good heuristics VSSTF and VLSTF produce
comparable results (i.e., the gain of the MM-ILP becomes less
pronounced as we increase the number of charging outlets per
station) which are still better than the values observed in the
case of the naive heuristics algorithms, namely, CTS, CTD, and
RSS. It is worthwhile noting in this respect that the maximum
waiting time decreases considerably as the number of charging
outlets per station increases. This is expected as increasing the
rate of departures from charging stations has the effect of reduc-
ing the amount of time a vehicle waits at a station until it starts
receiving its charging service.

Now, although the maximum waiting time is improved (by
the MM-ILP method), this may be at the expense of increasing
the average waiting times of EVs. Fig. 4(c) shows the average
waiting time for different number of EVs. As expected, first, the
average waiting time is an increasing function of the number of
vehicles. According to the reported results, it is clear that the
VSSTF heuristic algorithm yields the shortest average station
waiting time as compared to the rest of the scheduling strategies,
except for the MS-ILP. VSSTF is found even to be able to
outperform the MM-ILP; this can be justified by the fact that
even though the MM-ILP aims at minimizing the maximum
station waiting time, this does not guarantee a control on the
average station waiting time. It is clear that, since the objective
of the MS-ILP is to optimize the average EV waiting time, it
records the best results for that performance metric. Here, it
is important to mention that, depending on the application and
its requirements, one may choose to minimize the maximum
waiting time using the MM-ILP model or opt to minimizing the
average EV waiting time using the MS-ILP model. In this paper,
both models were resolved for completeness.

Fig. 5 provides insight into the scalability of the ILP-based
solutions by plotting the ILP running time as a function of the
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TABLE I
MM-ILP CPU RUN TIME FOR DIFFERENT VALUES OF I AND L

number of vehicles. The running time increases impractically
fast with the number of vehicles. Obviously, a centralized agent
utilizing any of the ILP models to perform the scheduling will
fail to cater to the vehicles requirements within reasonable time
frames. Note that the case MM-ILP with 40 vehicles is not
included in the figure as the MM-ILP model was stopped af-
ter 24 hours of runtime. Response time values that are in this
order of magnitude are clearly not practical in the context of
the considered problem. This is particularly true since vehicles
expect the agent to respond to their requests in a quasi-real
time fashion. This clearly demonstrates the limitation of the
ILP-based solution owing to its inability to scale well for large
number of vehicles. It is in this context that solutions like the
game-theoretic one introduced in the next section becomes nec-
essary. Note that, the CPU runtime for MS-ILP is much less
than that of MM-ILP, particularly for a small number of vehi-
cles since the time horizon is much wider for MM-ILP resulting
in an increase in terms of the number of time-related constraints
and as such requiring long periods of time for its resolution.

Finally, Table I illustrates the evolution of the MM-ILP’s
running time for different values of the number of vehicles and
number of charging outlets. These results assert the fact that the
running time of the ILP is greatly improved when the number
of charging outlets per station increases. This is justified by the
fact that the maximum waiting time decreases in this case and as
a result, the number of instances of the time-related constraints,
namely Equations (5), (7), (12), and (13), would significantly
decrease.

B. Game Theoretic Results

This section is dedicated to present and discuss the reported
results of scheduling EVs on charging stations in terms of
average waiting time and maximum waiting time. Furthermore,
the number of iterations required for the game to converge to
Nash equilibrium as well as the CPU run time are also laid
out in this section. We consider two systems to study, a small
one (as shown in Fig. 2) and another larger one which consists
of replicating the previous scenario 4 times. The number of
available CSs becomes 28, and the number of EVs requesting
charging services is varied between 500 and 1000EVs. The
performance metrics of interests are the maximum waiting time,
the average waiting times and the CPU run time. As discussed
earlier, the maximum waiting time is measured after running
the different methods and measuring the largest experienced
waiting time (this serves as a good metric to compare the
proposed heuristics and game methods with the ILP), which
can indicate the level or quality of experience of EVs’ charging.

Fig. 6. Maximum waiting time: Game vs. ILP. (a) Maximum WT with L = 1.
(b) Maximum WT with L = 2. (c) Maximum WT.

Fig. 6 plots the maximum waiting time experienced at a charg-
ing station by the EVs (considering the system depicted in
Fig. 2), as we vary the number of vehicles and charging out-
lets per station. The reported results under the game theoretic
scheduling technique are compared to the ILP models as well
as VSSTF and VLSFT. Clearly, the maximum EV waiting time
at a CS increases with the number of EVs seeking charging ser-
vices. It is also clear from Fig. 6(a) and (b) that increasing the
number of charging outlets from L = 1 to L = 2 significantly
decreases the maximum waiting times by 30–40%. Fig. 6 also
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demonstrates the superiority of the MM-ILP model in terms of
reducing the EV maximum waiting time and hence improving
the quality of experience. This is indeed due to the objective of
the MM-ILP model. Alternatively, it is promising to note that the
game theoretic approach records sub-optimal results in terms of
maximum waiting times and, most of the time, outperforms the
good heuristics (particularly as the number of EVs increase).
Note that, in the game model, each player (i.e., EV) seeks to
minimize its own waiting time, rather than the worst waiting
time in the system. It should be recalled here that the game
method is a distributed approach, where each EV optimizes its
payoff (i.e., wait time); further, the game approach can be em-
ployed as an online scheduling where at anytime an EV decides
to get service, gets to play with other EVs requesting service
at the same time in order to decide their best strategy. The ILP
models however, as well as the heuristics, are centralized and
expected to be run periodically at the agent upon receiving a
batch of service requests from EVs.

Fig. 7 plots the average EV waiting time and compares the
results collected from the game theoretic approach with both
the ILP models as well as with the two heuristics (VSSTF and
VLSTF). It is clear from Fig. 7(a) through (c) that, indepen-
dent from the scheduling algorithm, the average time an EV
spends in a CS increases as the total number of EVs requesting
recharging services increases. Furthermore, the availability of
more charging outlets per charging station helps decrease the
EV average waiting time. Fig. 7 shows that the game model
outperforms its centralized MM-ILP counterpart in terms of the
average EV waiting time; e.g., an average wait time lower by
15 time slots is shown when 35 vehicles are simulated in both
the ILP and the game method (recall that the objective of the
MM-ILP model was to minimize the maximum EV waiting
time). Compared to the optimal average waiting time realized
by the MS-ILP model, the game theoretical approach records
sub-optimal results. Another observation worthy of mentioning
here is that the heuristics perform remarkably well in terms of
average wait times, especially VSSTF, showing comparable re-
sults to those obtained using the game and the MS-ILP. Here,
VSSTF follows a shortest job first policy for scheduling EVs
and indeed this discipline is known for its simplicity and be-
cause it minimizes the average amount of time each EV has to
wait until its execution is complete [27]. Nonetheless, as shown
in Fig. 6, the VSSTF discipline may be a source of unfairness as
it exhibits the worst maximum wait times (affecting the quality
of experience of EVs).

Now, recall from Fig. 5 that the time required to solve the
ILP model increases uncontrollably as the number of vehicles
continues to increase. As such, it becomes computationally in-
tensive and eventually infeasible to solve any ILP model and
schedule the charging of EV vehicles when their number ex-
ceeds, e.g., say a hundred. On the other hand, as mentioned
earlier, the game model is solved in a distributed manner where
each EV individually modifies its strategy until the game con-
verges to a Nash equilibrium. Figs. 8 and 9 present the results
reported from solving the game model for a very large number
of EVs requesting charging services in a larger system.

Fig. 8 plots the average EV waiting time under the game
model and compares the results with the two heuristics VSSTF

Fig. 7. Average waiting time: Game vs. ILP. (a) Average WT with L = 1. (b)
Average WT with L = 2. (c) Average WT.

and VLSTF. Fig. 8(a)–(c) reassure the significance of multiple
outlets per CS to decrease the average waiting times especially
when the total number of scheduled EVs increases. Further-
more, Fig. 8(a)–(c) show that the average EV waiting time un-
der the game theoretic approach is almost identical to that under
VSSTF. This further demonstrates the ability of the game model
to achieve lowest average waiting times especially when com-
pared to a shortest job first algorithm which is widely known to
record the least average waiting time [27].

Fig. 9 plots the maximum EV waiting time under the game
model as well as the VSSTF and VLSTF heuristics. Fig. 9(a)–
(c) clearly show that the game model significantly outperforms
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Fig. 8. Average waiting time: Distributed game approach. (a) Average WT
with L = 2. (b) Average WT with L = 3. (c) Average WT.

VLSTF in terms of the maximum EV waiting time. Also, the
game model scheduling algorithm records a smaller maximum
EV waiting time than that under VSSTF. This promising result
highlights the competence of the distributed game scheduling
approach especially given its comparable results with central-
ized scheduling heuristics.

Fig. 10 depicts the required number of iterations for the game
model to converge to Nash equilibrium when 1000 EVs are
requesting charging services on 28 CSs with 3 outlets per CS.

Fig. 9. Maximum waiting time: Distributed game approach. (a) Maximum
WT with L = 2. (b) Maximum WT with L = 3. (c) Maximum WT.

It is clear from Fig. 10 that after 10 iterations of the game, Nash
equilibrium has been reached. This is an important indicator
of the fast convergence of the distributed pure strategy game
model. Finally, Fig. 11 plots the CPU run time required to
schedule between 500 and 1000 EVs on 28 CSs with 3 outlets
per CS. The distributed nature of the game theoretic approach
allows each EV (player in the game) to compute its payoff and



7908 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 67, NO. 9, SEPTEMBER 2018

Fig. 10. Game convergence to Nash Eq.

Fig. 11. CPU run time.

modify its strategy simultaneously, which is not possible under
a centralized algorithm. As such, as clearly shown in Fig. 11,
the CPU run time under the game theoretic approach is slightly
affected by the number of EVs, whereas, the CPU run time
increases dramatically under the two centralized heuristic algo-
rithms, namely VSSTF and VLSTF. This result motivates the
adoption of a distributed algorithm, particularly a game theoretic
approach, to schedule the charging service of a large number
of EVs. Fig. 11 is a clear evidence that the VSSTF and VLSTF
heuristics have approximately the same average running time.
This is due to the fact that these two algorithms differ solely in
terms of the selection process from the priority list maintained
per station (see Algorithm 1). In particular, while VSSTF
repeatedly selects from the priority list the vehicle with the
shortest service time, the VLSTF repeatedly gets from the pri-
ority list the vehicle with the longest running time. This results
in the same running time for the selection process, and hence,
the same running time for the overall algorithms. The slight
running time difference observed in Fig. 11 between VSSTF
and VLSTF is within the simulation’s confidence interval.

Table II illustrates the CPU runtime required to schedule a
small number of EVs on J charging outlets per CS. Moreover,
Table III presents the CPU runtime as well as the required num-
ber of iterations for the game to converge and schedule a large
number of EVs on CSs. Tables II and III further prove that the
quick realization of a scheduling policy using the game theoretic

TABLE II
GAME THEORETIC APPROACH CPU RUN TIME FOR

DIFFERENT VALUES OF I AND L

TABLE III
EXAMPLES OF CPU RUN TIME (MS) AND GAME ITERATIONS FOR

LARGE NUMBER OF EVS (3 OUTLETS PER CS)

approach is independent of the number of EVs and outlets per
CS, which is an expected result due to the distributed nature of
the scheduling algorithm.

VIII. CONCLUSION

The widespread installation of supercharging services for
EVs necessitates the realization of proper scheduling policies to
avoid extended queues at CSs and elevated EV waiting times.
This paper established centralized as well as distributed schedul-
ing techniques that organize the charging operation of EVs at dif-
ferent CSs. The centralized linear optimization model recorded
the optimal results for the maximum EV waiting time when
compared with several other scheduling heuristics. However,
given that problem turned out to be NP-hard, and its scalability
is a limiting factor. Hence, this paper then formulated a dis-
tributed game theoretic approach that overcomes the scalability
issue of the ILP model and records promising results.
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