Java Software Solutions, 5th Edtion

Exercise Solutions, Ch. 5

Chapter 5 Exercise Solutions
EX 5.1. What happens in the MinOfThree program if two or more of the values are equal? If exactly two of the values are equal, does it matter whether the equal values are lower or higher than the third?

If two or more values are equal, the program still prints the lowest value. Because only less than comparisons are made, the comparison of two equal values produces a false result. If two values are equal, and lower than the third value, then one of the two lower but equal values is printed. If all three values are equal, then this value is printed. Which “version” of the equal value is irrelevant.

If only two values are equal, it does not matter whether the third is lower or higher. The correct result is determined in either case. If the two equal values are lower than the third, then one of the two lower but equal values is printed. If the two equal values are higher than the third, then the third value is printed.

EX 5.2. What is wrong with the following code fragment? Rewrite it so that it produces correct output.

if (total == MAX)

 if (total < sum)

 System.out.println ("total == MAX and < sum.");

else

 System.out.println ("total is not equal to MAX");

Despite the indentation, the else clause is associated with the immediately preceding if rather than the first if. The program will produce the correct output if it is rewritten as:

if (total == MAX)

{

 if (total < sum)

 System.out.println ("total == MAX and < sum.");

}

else

 System.out.println ("total is not equal to MAX");

EX 5.3. What is wrong with the following code fragment? Will this code compile if it is part of an otherwise valid program? Explain.

if (length = MIN_LENGTH)

 System.out.println ("The length is minimal.");

The assignment operator (=) is used erroneously in place of the equality operator (==). Hence, it will not compile in an otherwise valid program.

EX 5.4. What output is produced by the following code fragment?

int num = 87, max = 25;

if (num >= max*2)

 System.out.println ("apple");

 System.out.println ("orange");

System.out.println ("pear");

The second println statement is improperly indented, so the output produced is:

apple

orange

pear

EX 5.5. What output is produced by the following code fragment?

int limit = 100, num1 = 15, num2 = 40;

if (limit <= limit)

{

 if (num1 == num2)

 System.out.println ("lemon");

 System.out.println ("lime");

}

System.out.println ("grape");

The output is:

lime

grape

EX 5.6. Put the following list of strings in lexicographic order as if determined by the compareTo method of the String class. Consult the Unicode chart in Appendix C.

"fred"

"Ethel"

"?-?-?-?"

"{([])}"

"Lucy"

"ricky"

"book"

"******"

"12345"

" "

"HEPHALUMP"

"bookkeeper"

"6789"

";+<?"

"^^^^^^^^^^"

"hephalump"

The strings in lexicographic order:

" "

"******"

"12345"

"6789"

";+<?"

"?-?-?-?"

"Ethel"

"HEPHALUMP"

"Lucy"

"^^^^^^^^^^"

"book"

"bookkeeper"

"fred"

"hephalump"

"ricky"

"{([])}"
EX 5.7. What output is produced by the following code fragment?

int num = 1, max = 20;

while (num < max)

{

 System.out.println (num);

 num += 4;

}

The output produced is:

1

5

9

13

17

EX 5.8. What output is produced by the following code fragment?

int num = 1, max = 20;

while (num < max)

{

 if (num%2 == 0)

 System.out.println (num);

 num++;

}

The output produced is:

2

4

6

8

10

12

14

16

18

EX 5.9. What output is produced by the following code fragment?

for (int num = 0; num <= 200; num += 2)

 System.out.println (num);

The output produced is the even numbers from 0 to 200:

0

2

4

and so on until…

198

200

EX 5.10. What output is produced by the following code fragment?

for (int val = 200; val >= 0; val -= 1)

 if (val % 4 != 0)

 System.out.println (val);

The output produced is all values from 200 down to 0, except those that are evenly divisible by 4:

199

198

197

195

and so on until…

5

3

2

1

EX 5.11. Transform the following while loop into an equivalent do loop (make sure it produces the same output).

int num = 1;

while (num < 20)

{

 num++;

 System.out.println (num);

}

This code can be written using a do loop as follows:

int num = 1;

do

{

 num++;

 System.out.println (num);

}

while (num < 20);

EX 5.12. Transform the while loop from the previous exercise into an equivalent for loop (make sure it produces the same output).

for (int num = 2; num <=20; num ++)

 System.out.println (num);

EX 5.13. What is wrong with the following code fragment? What are three distinct ways it could be changed to remove the flaw?

count = 50;

while (count >= 0)

{

 System.out.println (count);

 count = count + 1;

}

The loop is infinite because count initially is greater than zero, and continues to increase in value. The flaw can be removed by (1) decrementing rather than incrementing count, (2) initializing count to 0 and using, as the condition of the while loop, count <= 50, and (3) picking an upper limit and using, as the condition of the while loop, count <= upperLimit.

EX 5.14. Write a while loop that verifies that the user enters a positive integer value.

Scanner scan = new Scanner(System.in);

System.out.print ("Enter a positive integer: ");

number = scan.nextInt();

while (number <= 0)

{

 System.out.print ("That number was not positive.");

 System.out.print ("Enter a positive integer: ");

 number = scan.nextInt();

}

EX 5.15. Write a do loop that verifies that the user enters an even integer value.

Scanner scan = new Scanner(System.in);

do

{

 System.out.print ("Enter an even integer: ");

 number = scan.nextInt();

}

while {number%2 != 0);

EX 5.16. Write a code fragment that reads and prints integer values entered by a user until a particular sentinel value (stored in SENTINEL) is entered. Do not print the sentinel value.

Scanner scan = new Scanner(System.in);

System.out.print ("Enter some integers (" + SENTINEL +

 " to quit): ");

number = scan.nextInt();

while (number != SENTINEL)

{

 System.out.println (number);

 number = scan.nextInt();

}

EX 5.17. Write a for loop to print the odd numbers from 1 to 99 (inclusive).

for (int value = 1; value <= 99; value +=2)

 System.out.println (value);

EX 5.18. Write a for loop to print the multiples of 3 from 300 down to 3.

for (int value = 300; value >= 3, value -= 3)

 System.out.println (value);

EX 5.19. Write a code fragment that reads 10 integer values from the user and prints the highest value entered.

Scanner scan = new Scanner(System.in);

int max, number;

System.out.print ("Enter an integer: ");

max = scan.nextInt();

for (int count = 2; count <= 10; count++)

{

 System.out.print ("Enter another integer: ");

 number = scan.nextInt();

 if (number > max)

 max = number;

}

System.out.println ("The highest value is :" + max);

EX 5.20. Write a code fragment that determines and prints the number of times the character 'a' appears in a String object called name.

int count = 0;

for (int index = 0; index < name.length(); index++)

 if (name.charAt(index) == 'a')

 count++;

System.out.println ("The character \'a\' appears "

 + count + " time(s)");

EX 5.21. Write a code fragment that prints the characters stored in a String object called str backwards.

for (int index = str.length()-1; index >= 0; index--)

 System.out.print (str.charAt(index));

System.out.println();

EX 5.22. Write a code fragment that prints every other character in a String object called word starting with the first character.

for (int index = 0; index < word.length(); index +=2)

 System.out.println(word.charAt(index));

EX 5.23. Write a method called powersOfTwo that prints the first 10 powers of 2 (starting with 2). The method takes no parameters and doesn't return anything.

public void powersOfTwo()

{

 int base = 2;

 for (int power = 1; power <= 10; power++)

 System.out.println (Math.pow(base,power));

}

Alternate answer:

public void powersOfTwo()

{

 int num = 2;

 for (int power = 1; power <= 10; power++)

 {

 num *= 2;

 System.out.println (num);

 }

}

EX 5.24. Write a method called alarm that prints the string "Alarm!" multiple times on separate lines. The method should accept an integer parameter that specifies how many times the string is printed. Print an error message if the parameter is less than 1.

public void alarm (int number)

{

 if (number < 1)

 System.out.println ("ERROR: Number is less than 1.");

 else

 for (int count = 1; count <= number; count++)

 System.out.println ("Alarm!");

}

EX 5.25. Write a method called sum100 that returns the sum of the integers from 1 to 100, inclusive.

public int sum100()

{

 int sum = 0;

 for (int count = 1; count <= 100; count++)

 sum += count;

 return sum;

}

EX 5.26. Write a method called maxOfTwo that accepts two integer parameters and returns the larger of the two.

public int maxOfTwo (int num1, int num2)

{

 int result = num1;

 if (num2 > num1)

 result = num2;

 return result;

}

Note that the method Math.max also performs this function.

EX 5.27. Write a method called sumRange that accepts two integer parameters that represent a range. Issue an error message and return zero if the second parameter is less than the first. Otherwise, the method should return the sum of the integers in that range (inclusive).

public int sumRange (int start, int end)

{

 int sum = 0;

 if (end < start)

 System.out.println ("ERROR: Invalid Range”);

 else

 for (int num = start; num <= end; num++)

 sum += num;

 return sum;

}

EX 5.28. Write a method called larger that accepts two floating-point parameters (of type double) and returns true if the first parameter is greater than the second, and false otherwise.

public boolean larger (double num1, double num2)

{

 return (num1 > num2);

}
EX 5.29. Write a method called countA that accepts a String parameter and returns the number of times the character 'A' is found in the string.

public int countA (String text)

{

 int count = 0;

 for (int index = 0; index < text.length(); index++)

 if (text.charAt(index) == 'A')

 count++;

 return count;

}

EX 5.30. Write a method called evenlyDivisible that accepts two integer parameters and returns true if the first parameter is evenly divisible by the second, or vice versa, and false otherwise. Return false if either parameter is zero.

public boolean evenlyDivisible (int num1, int num2)

{

 boolean result = false;

 if (num1 != 0 && num2 != 0)

 if (num1 % num2 == 0 || num2 % num1 == 0)

 result = true;

 return result;

}

EX 5.31. Write a method called isAlpha that accepts a character parameter and returns true if that character is either an uppercase or lowercase alphabetic letter.

public boolean isAlpha (char ch)

{

 return ((ch >= 'a' && ch <= 'z') ||

 (ch >= 'A' && ch <= 'Z'));

}

Note: similar functionality is provided by the Character.isLetter method.

EX 5.32. Write a method called floatEquals that accepts three floating-point values as parameters. The method should return true if the first two parameters are equal within the tolerance of the third parameter.

public boolean floatEquals (double float1, double float2,

 double tolerance)

{

 return (Math.abs(float1 - float2) <= tolerance);

}

EX 5.33. Write a method called reverse that accepts a String parameter and returns a string that contains the characters of the parameter in reverse order. Note that there is a method in the String class that performs this operation, but for the sake of this exercise, you are expected to write your own.

public String reverse (String text)

{

 String result = "";

 for (int place = text.length()-1; place >= 0; place--)

result += text.charAt(place);

 return result;

}

EX 5.34. Write a method called isIsoceles that accepts three integer parameters that represent the lengths of the sides of a triangle. The method returns true if the triangle is isosceles but not equilateral (meaning that exactly two of the sides have an equal length), and false otherwise.

public boolean isIsoceles (int side1, int side2, int side3)

{

 boolean result = false;

 if ((side1 == side2) && side1 != side3) ||

 (side2 == side3) && side2 != side1) ||

 (side1 == side3) && side1 != side2))

 result = true;

 return result;

}

EX 5.35. Explain what would happen if the radio buttons used in the QuoteOptions program were not organized into a ButtonGroup object. Modify the program to test your answer.

The three radio buttons used in the QuoteOptions program represent mutually exclusive choices (Comedy, Philosophy, or Carpentry). Their organization into a ButtonGroup prevents more than one of them from being selected at any point in time. The references comedy, philosophy, and carpentry are associated with JRadioButtons, with comedy being set initially to true. These JRadioButtons are added to a JPanel which is the primary panel containing the GUI. If they are not organized into a ButtonGroup multiple buttons can be selected at one time. However, the quote displayed is the quote associated with the last selected button (even though other buttons also may be selected).

Chapter 5 Programming Projects Solutions

PP5.1 Refer to LeapYear.java in “chap05 pp solutions”

PP5.2 Refer to LeapYear2.java
PP5.3 Refer to SumEvens.java
PP5.4 Refer to StringDown.java
PP5.5 Refer to CountDigits.java
PP5.6 Refer to MultTable.java
PP5.7 Refer to TravelingSong.java
PP5.8 Refer to HiLo.java
PP5.9 Refer to PalindromeTester2.java
PP5.10 Refer to BoxCars.java and PairOfDice.java
PP5.11 Refer to CountFlips.java and Coin.java
PP5.12 Refer to FlipRace.java and Coin.java
PP5.13 Refer to Stars2.java (part a), Stars3.java (part b), Stars4.java (part c), and Stars5.java (part d)
PP5.14 Refer to CharTable.java
PP5.15 Refer to Vowels.java
PP5.16 Refer to RockPaperScissors.java

PP5.17 Refer to TwelveDays.java
PP5.18 Refer to SimpleSlot.java
PP5.19 Refer to IntCounter.java
PP5.20 Refer to ParallelLine.java and ParallelLine.html
PP5.21 Refer to StairSteps.java and StairSteps.html
PP5.22 Refer to ColoredCircles.java and ColoredCircles.html
PP5.23 Refer to ConcentricCircles.java and ConcentricCircles.html
PP5.24 Refer to BrickWall.java and BrickWall.html
PP5.25 Not provided
PP5.26 Refer to Quilt2.java, Pattern.java, and Quilt2.html
PP5.27 Refer to Fence.java and Fence.html
PP5.28 Refer to Rainbow.java and Rainbow.html
PP5.29 Refer to Points.java and Points.html
PP5.30 Refer to LargestCircle.java and LargestCircle.html
PP5.31 Refer to SumProduct.java

PP5.32 Not provided

PP5.33 Not provided

PP5.34 Not provided

PP5.35 Refer to StyleOptions2.java and StyleGUI2.java

PP5.36 Refer to GolfScores.java and golf.dat

PP5.37 Refer to FileContrast.java, contrast1.dat, and contrast2.dat

PP5.38 Not provided

PP5.39 Not provided

PP5.40 Refer to PlayPig.java, Pig.java, PigPlayer.java, PairOfDice.java, and Die.java

PP5.41 Refer to DealCards.java and Card.java
