Problem I

In this problem, you will play a number guessing game with the end user. Elementary-school students are encouraged by their teachers to play this game as it helps improve their logical thinking. A step-by-step description of the said game is presented hereafter:

1. Ask the end user to think of an int number n0.

2. Ask the end user to multiply n0 by 3 and to tell you if the resulting value n1 is even or odd.

3. If n1 is even, then the end user must be asked to divide n1 by 2. On the other hand, if n1 happens to be odd, prompt the end user to increment n1 by 1 before dividing it by 2. Let n2 be the computed result in either cases.

4. Let the end user now multiply n2 by 3 and denote by n3 the obtained result.

5. At this stage, you should ask the end user to give you n4, the result obtained after dividing n3 by 9 using integer division.

6. Finally, you can reveal n0 either by multiplying n4 by 2 if n1 is even, or by computing n0 using (2* n4+1) otherwise.
Here is a sample input/output:

Think of an int number and then multiply it by 3.

Tell me whether the result is even or odd: odd

Multiply that same result by 3 before dividing it by 9.

Give me the resulting value: 18

The original number was: 37

Solution

import java.util.*;

public class Guessing {

public static void main(String[] args) {

int n4, n0;

String evenOrOdd;

Scanner scan = new Scanner(System.in);

S.o.p("Think of int number then multiply by 3");

S.o.p("Is the result even or odd?");

evenOrOdd = scan.nextLine();

if(evenOrOdd.equals("even"))

System.out.println("divide result by 2");

else

S.o.p("add 1 to result then divide it by 2");

S.o.p("Multiply result by 3 then divide it by 9");

S.o.p("Give me the resulting value: ");

n4 = scan.nextInt();

if(evenOrOdd.equals("even"))

S.o.p("Original number was: " + 2*n4);

else

S.o.p("the original number was: "+(2*n4+1));

}

}

Problem II
Wikipedia defines the technical term “cryptography” as “the art of information hiding”. This is precisely what our friend Bill is looking for. In fact, Bill wants to write the numbers stored in his phone book in some secret way that only him can decipher. To this end, he devised the following algorithm: Instead of writing down the phone number as is in his phone book, he decided to incorporate a modified version of the number into the phone book as follows. He would shift the phone number by one place to the left (multiplying it by 10) and then add the shifted number with the original number. For instance, if the phone number was 223, Bill would add 2230 to it; this yields a value of 2453. In an attempt to make the resulting value looks like a regular phone number, Bill truncates the digit furthest to the left from the value so that it ends up with as many digits as the original phone number. In this example, Bill includes 453 instead of 223 in his phone book.

Write a program that prints the original phone numbers given what is written in Bill’s phone book. Assume that the phone book is stored in a file called “phone.in” with one phone number per line and that the last line of the input file is made of a single zero (indicating the end of the phone book). It is possible that some of the numbers in the phone book are messed up (not valid) and thus your program should print IMPOSSIBLE if the original number cannot be derived from the coded version of the number. The decoded numbers should be written to an output file called “out.dat”.

Sample Input/Output:

As per the above-presented output, you are required to output the result corresponding to each coded phone number on a single line using the following format: k. result, where k is the index of the coded phone number in “Phone.in”.
Solution

import java.io.*;

import java.util.Scanner;

public class Cryptography {

public static void main(String[] args) throws IOException {

FileWriter fw = new FileWriter("out.dat");

BufferedWriter bw = new BufferedWriter(fw);

PrintWriter outFile = new PrintWriter(bw);

Scanner fileScan = new Scanner(new
File("Phone.in"));

String phone_str;

int prev, decoded, factor;

int next, phone_nb, lastDigit;

int index = 0;

boolean impossible, carry;

while(fileScan.hasNext()) {

prev = 0;

factor = 1;

decoded = 0;

impossible = false;

carry = false;

phone_str = fileScan.next();

phone_nb = Integer.parseInt(phone_str);

if(phone_nb == 0)

break;

index++;

while(phone_nb != 0) {

lastDigit = phone_nb % 10;

if(lastDigit < prev) {

lastDigit += 10;

carry = true;

}

next = lastDigit - prev;

decoded += next * factor;

phone_nb /= 10;

factor *= 10;

if(carry)

prev = next+1;

else

prev = next;

if((phone_nb == 0 && prev == 0))

impossible = true;

}

if(impossible)

outFile.println(index+". IMPOSSIBLE");

else

outFile.println(index+". "+decoded);

}

outFile.close();

}

}
Problem III

Design and implement a Java application that writes 6 valid Lotto grids to a file with 7 numbers per grid. Note that no two numbers in a grid are allowed to be equal.

Solution

import java.util.Random;

import java.io.*;

public class Lotto {

public static void main(String[] args) throws IOException{

Sting filename = “Lotto.dat”;

Random rnd = new Random();

final int NBGRIDS = 6;

FileWriter fw = new FileWriter(filename);

BufferedWriter bw = new BufferedWriter(fw);

PrintWriter outFile = new PrintWriter(bw);

int val1, val2, val3, val4, val5, val6, val7;

for(int i = 0; i <NBGRIDS; i++) {

val1 = rnd.nextInt(42) + 1;

outFile.print(val1+” “);

do {

val2 = rnd.nextInt(42) + 1;

} while(val1 == val2);

outFile.print(val2+” “);

do {

val3 = rnd.nextInt(42) + 1;

} while(val3 == val2 || val3 == val1);

outFile.print(val3+” “);

do {

val4 = rnd.nextInt(42) + 1;

} while(val4 == val3

|| val4 == val2 || val4 == val1);

outFile.print(val4+” “);

do {

val5 = rnd.nextInt(42) + 1;

} while(val5 == val4 || val5 == val3

|| val5 == val2 || val5 == val1);

outFile.print(val5+” “);

do {

val6 = rnd.nextInt(42) + 1;

} while(val6 == val5 || val6 == val4 || val6 == val3

|| val6 == val2 || val6 == val1);

outFile.print(val6+” “);

do {

val7 = rnd.nextInt(42) + 1;

} while(val7 == val6 || val7 == val5 || val7 == val4

|| val7 == val3 || val7 == val2

|| val7 == val1);

outFile.print(val7+” “);

outFile.println();

}

outFile.close();

}

}
out.dat

Phone.in

1. 123

2. 223

3. IMPOSSIBLE

4. 738496

353

453

9988

123456

0

