
 1

COE 212 – Engineering Programming

Welcome to Exam II
Thursday April 30, 2015

Instructors: Dr. Georges Sakr

 Dr. Joe Tekli
 Dr. Wissam F. Fawaz

Name: _______________________

Student ID: ________________

Instructions:

1. This exam is Closed Book. Please do not forget to write your
name and ID on the first page.

2. You have exactly 115 minutes to complete the 5 required
problems.

3. Read each problem carefully. If something appears ambiguous,
please write your assumptions.

4. Do not get bogged-down on any one problem, you will have
to work fast to complete this exam.

5. Put your answers in the space provided only. No other spaces
will be graded or even looked at.

Good Luck!!

 2

Problem 1: Multiple choice questions (15 minutes) [14 points]
Consider an input text file called “in.txt” that contains some data and an
empty output file named “out.txt”.

1) Which of the following statements creates an object called inFromFile that can obtain data from
in.txt?

a. Scanner fileScan = new Scanner(new File(“in.txt”));
b. Scanner inFromFile = new Scanner(new File(“out.txt”));
c. Scanner inFromFile=new Scanner(new File(new String(“in.txt”));
d. None of the above

2) Given the inFromFile object created earlier, which of the following code fragments prints to the
screen all the lines contained in in.txt each on a different line?

a. while(inFromFile.hasNext()) {
 System.out.println(inFromFile.nextLine());};

b. while(inFromFile.hasNext()) {
 System.out.println(inFromFile.nextLine());}

c. Both of the above
d. None of the above

3) Which of the following creates an object that can be used to parse the pieces of a line obtained from
in.txt? Note that we are interested in the tokens separated by the / (forward slash) character.

a. Scanner lineScan = new Scanner(inFromFile.nextLine());
lineScan.useDelimiter(‘/’);

b. Scanner lineScan = new Scanner(inFromFile.nextLine());
lineScan.usedelimiter(“/”);

c. Scanner lineScan = new Scanner(inFromFile.nextLine(), “/”);
d. None of the above

4) What type of relationship exists between Scanner and Iterator?
a. “uses” relationship with Scanner using the methods of Iterator
b. “has a” relationship with Scanner containing references to Iterator objects
c. “implements” relationship with Scanner implementing the methods of Iterator
d. None of the above

5) Which of the following statements prints the second half of a line obtained from in.txt through the
inFromFile object created above? Assume that the line contains an even number of characters.

a. String line = inFromFile.nextLine();
for(int i=line.length/2;i<line.length;i++)
 System.out.print(line.charAt(i));

b. int i; String line = inFromFile.nextLine();
for(int i=line.length()/2;i<line.length();i++)
 System.out.print(line.charAt(i));

c. Both of the above
d. None of the above

6) Assume that line is a variable that holds a line of text obtained from in.txt. Which of the following
switch statements prints too short one time if line contains less than 2 characters (inclusive) and
too long otherwise?

a. switch(line.length() <= 2) {
case true: System.out.print(“too short”);
case false: System.out.print(“too long”);}

b. switch(line.length()) {
case 0: System.out.print(“too short”);
case 1: System.out.print(“too short”);
case 2: System.out.print(“too short”);
default: System.out.print(“too long”);}

c. Both of the above
d. None of the above

 3

7) When processing a file using the Scanner class, which of the following has to be placed at the
end of the header of the main method?

a. throw IOException
b. throws IOException
c. Throw IOException
d. None of the above

8) When processing a file using the Scanner class, which of the following import declaration
statements must be used?

a. import java.util.*;
import java.io.* ;

b. import java.util.Scanner;
import java.io.*;

c. Either of the above
d. None of the above

9) Which of the following provides print and println methods that can print data to a file?
a. FileWriter
b. BufferedWriter
c. PrintWriter
d. None of the above

10) Assume that outToFile is an object that can write data to the out.txt output file. Which of the
following code fragments can be used to create an exact copy of the data contained in in.txt inside
out.txt?

a. while(inFromFile.hasNext())
 outToFile.println(inFromFile.nextLine());

b. while(inFromFile.hasNext())
outToFile.print(inFromFile.nextLine());

 outToFile.close();
c. Both of the above
d. None of the above

11) Not closing the object used to write data to a file once all the data is transferred to the output file is
an example of a

a. Logical error
b. Syntax error
c. Run-time error
d. None of the above in the sense that not closing the object does lead to an error

12) Which of the following represents a proper way of creating a FileWriter object called fw that
is attached to the out.txt output file?

a. FileWriter fw = new FileWriter(out.txt);
b. FileWriter fw = new FileWriter(new String(“out.txt”));
c. Both of the above
d. None of the above

13) Which of the following is true about writing data to a file?
a. Not closing the PrintWriter object results in an empty file
b. The header of the main method must indicate that an IOException can be thrown if something

goes wrong
c. Both of the above
d. None of the above

14) Which of the following sets of methods are part of Iterator?
a. hasNext(), nextLine()
b. hasMoreTokens(), nextToken()
c. hasNext(), next(), nextLine()
d. None of the above

 4

Problem 2: True or false questions (15 minutes) [16 points]
1. The following code prints: No ***

boolean x = true;
if(!x)
 System.out.print(“Yes”);
else
 System.out.print(“No”);
 System.out.print(“ ***”);

Answer: True False
2. The output of the program segment below is the text: not rich Done

int rate = 6;
if(rate >= 9 || rate <=5)
if(rate <= 5) System.out.print(“poor”);
else System.out.print(“middle class”);
else System.out.print(“not rich”);
System.out.print(“Done”);

Answer: True False
3. The following method returns the leftmost digit of the input parameter x.

public int method1(int x) {
 while(x>10)
 x = x/10;
 return x;}

Answer: True False
4. The following code is syntactically valid in Java.

for(int z=10; z>=0;)
 z--;
System.out.print(z);

Answer: True False
5. To check if an integer variable x does not belong to the range of 3 (inclusive) through 5 (inclusive),

we could use the following
if(!(x < 3) || !(x > 5))

Answer: True False
6. Consider the following code below using nested while loops:

int count1=1, count2=1;
while(count1<=100) {
 while(count2 <= 1000) {
 System.out.println(count2);
 count2++;}
 count1++;}
The code above is functionally equivalent to the following code using nested for loops:

 for(int count1=1; count1<=100; count1++)
 for(int count2=1; count2<=1000; count2++)
 System.out.println(count2);

Answer: True False
7. The following method reverses the digits of the input parameter x.

public int method2(int x) {
 int reverse=0;
 do {
 reverse = reverse + x % 10;
 } while(x > 0);
 return reverse;}

Answer: True False
8. In Java, parameters are passed by value; therefore, changes made to primitive parameters are

permanent and persist after the method is exited.
Answer: True False

 5

9. The following code prints the odd numbers between 1 (inclusive) and 10 (inclusive).
int count=1;
while(count <= 10) {
 if(count % 2 == 0)
 continue;
 System.out.println(count);
 count++;}

Answer: True False
10. The following code prints the max value among the three variables num1, num2, and num3.

int val;
if(num1 > num2)
if(num1 > num3)
val = num1;
else
val = num3;
else if(num2 > num3)
val = num2;
else
val = num3;
System.out.print(val);

Answer: True False
11. The following code can be rewritten with a switch statement.

double val=2.5;
if(val == 3) System.out.print(“First threshold reached”);
else if(val == 2.5) System.out.println(“2nd threshold reached”);
else System.out.println(“Neither thresholds reached”);

Answer: True False
12. The following code prints: 8

int x = 1;
for(int i=0; i<3; i++)
for(int j=i; j<3; j++)
x = x+j;
System.out.print(x);

Answer: True False
13. Consider a class called ClassA that contains one instance variable and one static variable. If three

objects are created from this class, then there will be three different versions of the instance variable
and three different versions of the static variable.

Answer: True False
14. The following code uses multiple overloaded versions of the System.out.println method.

int x = 1, y=2;
System.out.println(x);
System.out.println(y);

Answer: True False
15. The following code prints the gcd of num1 and num2.

while(num1 != num2) {
 num1 = (num1 > num2) ? num1 – num2 : num2 – num1;}
System.out.print(num1);

Answer: True False
16. String is an example of a self-dependent class.
Answer: True False

 6

Problem 3: Method analysis (15 minutes) [10 points]

Consider the methods given below.

1) What would be the output of the method call: compute(12);

a. 6
b. 7
c. 8
d. Compile-time error
e. None of the above

2) What would be returned if it were called using the statement:

stringManip(“aba”);?

a. aabbaa
b. aabaabba
c. abbaba
d. Compile-time error
e. none of the above

 public static String stringManip(String S){

 String S1= "";
 String S2 = "";
 for(int i=0; i<S.length(); i++){
 for(int j=S.length(); j>i; j--){
 if(S.charAt(i) == S.charAt(j-1)) {
 S1=S1+S.charAt(i);}
 else
 S2=S2+ S.charAt(i) + S.charAt(j-1);
 }
 }
 S=S1 + S2;
 return S;
 }

public void compute(int n){
 int x = n;
 int c = 0;
 while(x>0)
 x = x%2;
 c++;
 for(int i=0; i<=c; i++)
 n = n + 2;

 System.out.print(n/2);
}

 7

Problem 4: Code analysis (15 minutes) [10 points]

For each of the following code fragments, what is the value of x after the statements are
executed?
(1) int x = 0, v=12345, c=0;
 while (v> 0){
 c = v % 10;
 if (c != 0 || c%2 !=0) x++;
 v = v / 10;}

 Answer: x = 5

(2) char c = 'E'; int x = 5;

switch(c) {
case 'B':
 x += 10;
break;
case 'D':
 x += 20;
case 'C':
 x += 30;
default:
 x += 40;
}

 Answer: x= 45

(3) int x = 0;

for(int i=0; i < 3; i = i+2)
for(int j=0; j<i; j++) x++;

 Answer: x = 2

(4) String S = new String("We rise by lifting others");

int y = 0; char c; String x = "";
do {

 c = S.charAt(y);
 if(c== 'r' || c == 'e’)
 x += c; y++;
} while(y < S.length());

 Answer: x = “ereer”

 8

(5) int x=3, i=-1; (2 pts)
do {
x -= i;
i++;
} while(i < 5);
x /= i;

 Answer: x = -1
(6) String S = "1 2 3 4 5"; (2 pts)

int x = 2, n;
Scanner scan = new Scanner(S);
while(scan.hasNext()) {
 n = Integer.parseInt(scan.next());
 if(n > x+1)
 x = n;
}

 Answer x = 4

 (7) int v=30, x = 0; (2 pts)

 for (int i=1; i<v; i++)
 if(v%i == 0) x+=i;

 Answer x = 42

 9

Problem 5: Coding (50 minutes) [50 points]
1. Write a program called WordStats that reads a sentence from the user and then

prints to the screen the following statistics pertaining to that input sentence:
 Number of upper-case letters, denoted by NbU
 Number of lower-case letters, denoted by NbL
 Number of digits, denoted by NbD
 And number of white space characters, denoted by NbS

Sample output:

Enter a sentence: Exam is fun
Nb. of capital letters: 1
Nb. of lower case letters: 8
Nb. of digits: 0
Nb. of white space characters: 2

import java.util.Scanner;

class WordStats{

 public static void main(String [] args)
 {

 String S;
 int NbU = 0, NbL = 0, NbD = 0, NbS = 0;

 Scanner scan = new Scanner(System.in);

 System.out.println("Enter a sentence: ");
 S = scan.nextLine(); // String does not contain special characters

 for(int i = 0; i < S.length(); i++)
 {
 if(S.charAt(i) >= 'A' && S.charAt(i)<= 'Z') NbU++;
 else if (S.charAt(i) >= 'a' && S.charAt(i)<= 'z') NbL++;
 else if (S.charAt(i) >= '0' && S.charAt(i)<= '9') NbD++;
 else NbS++;
 }

 System.out.println("Nb. of capital letters: " + NbU);
 System.out.println("Nb. of lower case letters: " + NbL);
 System.out.println("Nb. of digits: " + NbD);
 System.out.println("Nb. of white space characters: " + NbS);

 }
}

 10

2. Write a program called ComputePI to compute the value of π, using the
following series expansion.

1 1 1 1 1
4 1 ...

3 5 7 9 N

The user has to enter the value of N. The program should then compare the
computed value of π with the constant value Math.PI provided by the Math class
and output the absolute value of the difference between the computed value π and
Math.PI rounded to 4 decimal points.

Sample output:

Enter integer N: 6
Computed PI = 3.4667
The difference with actual PI: 0.3251

import java.util.Scanner;
import java.text.DecimalFormat;

class ComputePI{
 public static void main(String [] args)
 {
 int N;
 double computedPI = 0;
 Scanner scan = new Scanner(System.in);

 do
 { System.out.println("Enter integer N: ");
 N = scan.nextInt();
 } N <=0;

 int sign = -1;

 for(int i = 1; i <= N; i+=2)
 {
 sign *= -1;
 computedPI += sign * (1/(double)i);
 }
 computedPI *= 4;
 DecimalFormat fmt = new DecimalFormat("0.####");
 double diff = Math.abs(Math.PI - computedPI);
 System.out.println("Computed PI = " + fmt.format(computedPI));
 System.out.println("The difference with actual PI = " + fmt.format(diff));
 }
}

 11

3. Write a program called NumberValidation that reads from the user an int
value. Your program should then determine whether or not the input value is valid
by:

a. Calculating the following two sums: S1, which is the sum of all the digits
and S2, which is the sum of all the odd digits.

b. And then verifying that S1+S2 is divisible by 10.
Note that the input number is valid if S1+S2 is divisible by 10 and invalid
otherwise.

Sample output:

Enter integer value: 56789
56789 is invalid

import java.util.Scanner;

class NumberValidation{

 public static void main(String [] args)
 {

 int N, n, d, S1=0, S2=0;

 Scanner scan = new Scanner(System.in);

 System.out.println("Enter integer value: ");
 N = scan.nextInt();

 n = N;

 while(n != 0)
 {
 d = n%10;
 S1 += d;
 if(d%2 !=0) S2 += d;
 n = n/10;
 }

 if((S1+S2)%10 ==0) System.out.println(N + " is valid");
 else System.out.println(N + " is invalid");

 }
}

 12

4. Write a program called ToggleCharacters that reads a word from the user
and then prints out a modified version of that word, where every lower case letter
of the original word is converted into its upper-case equivalent and every upper
case letter of the original word is converted into its lower-case equivalent (See the
sample output given below).

Sample output:

Enter a word: CreDIt
Modified word: cREdiT

import java.util.Scanner;

class ToggleCharacters{

 public static void main(String [] args)
 {

 String word;

 Scanner scan = new Scanner(System.in);

 System.out.println("Enter a word: ");
 word = scan.nextLine();

 String word2 = "";

 for(int i=0; i< word.length(); i++)
 {
 String S = "" + word.charAt(i);

 if(word.charAt(i) >= 'A' && word.charAt(i) <= 'Z') word2 += S.toLowerCase();
 else word2 += S.toUpperCase();

 }

 System.out.println("Modified word: " + word2);

 }
}

 13

5. Write a program called DuplicateElimination that reads a word from the
user denoted by word. Your program should then create a modified version of the
input word denoted by modifiedWord, where all the letters occurring multiple
times in the original word appear once in modifiedWord.

Sample output:

Enter a word: engineering
Modified word: engir

import java.util.Scanner;

class DuplicateElimination{

 public static void main(String [] args)
 {

 String word, modifiedWord ="";
 String dup = ""; // special string to store duplicate characters

 Scanner scan = new Scanner(System.in);

 System.out.println("Enter a word: ");
 word = scan.nextLine();

 for(int i=0; i< word.length(); i++)
 {
 if(modifiedWord.indexOf(word.charAt(i)) == -1)
 modifiedWord += word.charAt(i);

 }

 System.out.println("Modified word: " + modifiedWord);
 }
}

