
 1

COE 312 – Data Structures

Welcome to Exam II
Monday November 23, 2016

Instructor: Dr. Wissam F. Fawaz

Name: _______________________

Student ID: ________________

Instructions:

1. This exam is Closed Book. Please do not forget to write your
name and ID on the first page.

2. You have exactly 55 minutes to complete the 4 required
problems.

3. Read each problem carefully. If something appears ambiguous,
please write your assumptions.

4. Points allocated to each problem are shown in square brackets.
5. Put your answers in the space provided only. No other spaces

will be graded or even looked at.

Good Luck!!

 2

Problem 1: Multiple Choice Questions (10 minutes) [20 points]

1) Assume SNode<String> temp is the tail node of a non-empty singly linked list.
Which of the following conditions are true about temp?

a. (temp == tail) evaluates to true
b. (temp.getNext()!=false) evaluates to true
c. Both of the above
d. None of the above

2) Consider the following recursive method definition:

public String foo(String str) {
 if(str.length() == 0)
 return “”;
 } else if (str.length() == 1) {
 return str.charAt(0) + “”;

}
else {

 String str_mod = str.substring(1, str.length());
 return str.chartAt(0) + foo(str_mod);

}
}
What output does foo produce if a value of “exam” is passed as the parameter?

a. exa
b. maxe
c. exam
d. None of the above

3) When an exception occurs, it is said to have been

a. caught
b. thrown
c. declared
d. None of the above

4) Consider the following recursive method definition:

public int question4(int x, int y) {
 if (x == y) return 0;
 else return question4(x-1, y) + 1;}
If the method is called as follows: question4(8, 3), what is returned?

a. 11
b. 8
c. 5
d. 3

5) Consider the recursive method from the previous question. The following method

call leads to an infinite recursion: question4(a, b) if
a. The value of a is equal to that of b
b. The value of a is different from the value of b
c. The value of a is strictly less than that of b
d. None of the above

 3

6) Which of the following is a correct Big-Oh characterization of the following
summation: ∑

a. O(nn)
b. O(nn+1)
c. Both of the above
d. None of the above

7) Consider the tower of Hanoi problem. If there are 2 disks to move from the source
tower to the destination tower, how many disk movements would it take to solve
the problem in the recursive solution?

a. 1
b. 2
c. 3
d. None of the above

8) Which of the following is a correct Big-Oh characterization of the running time of

the following pseudo code?
sum ← 0
for i ← 1 to n do
 for j ← 1 to i do
 sum ← i*j
 return sum

a. O(n)
b. O(log2n)
c. O(n2)
d. O(2n)

9) In an array-based implementation (non-circular and non-drifting) of a queue that

always stores the rear element of the queue at index 0 in the array, the enqueue
operation is

a. O(n)
b. O(1)
c. Impossible to implement
d. None of the above

10) Consider a circular drifting array-based implementation of the queue ADT with 10

items stored at arr[2] (rear) through arr[11] (front). Assume that
the capacity of the arr array is 12. What will be the new value of the front index
after a dequeue operation is performed?

a. 12
b. 0
c. 10
d. None of the above

 4

Problem 2: Recursion (15 minutes) [20 points]
(1) Consider a method called reverseStack that prints the elements of a Stack parameter

reversely. That is, the first element to be printed is the bottom of the stack and the last to
be printed is the top of the stack. Implement this method in Java by using recursion. Use
the following header for the method and write your code in the space provided.
void reverseStack(Stack stack) throws StackException{

if(stack.size() == 0)
 return;
 else {
 Object toPrint = stack.pop();
 reverseStack(stack);
 System.out.print(toPrint + “ ”);

}

 }

(2) Write a recursive function called multiplyDigits that returns the product of the digits
that make up an integer parameter. For example, sumDigits(234) returns 24. Note
that modulo operator (%) can be used to extract the last digit while integer division can be
employed to remove it as follows: 13%10 = 3 and 13/10=1.
int multiplyDigits(int value) {

int lastDigit = value % 10;
 value = value /10;

 if(value == 0)
 return lastDigit;
 else
 return lastDigit * multiplyDigits(value);

}

 5

Problem 3: Analysis of algorithms (15 minutes) [25 points]
1. Consider the following algorithm described in pseudo-code, which takes an array A of

n integers as input and uses an initially-empty stack S as a local variable.
Let t <- 0;
Let S be an empty stack;
for i <- 0 to n – 1 do
 if A[i] < 0 then
 while S is not empty do
 t <- t + S.pop();
 end while
 else
 S.push(A[i]);
 end if
end for
while S is not empty do
 t <- t + S.pop();
end while
output t;

a. What is the output of this algorithm for the array A = {1, -2, 3, 4, -3}?
8

b. Describe in one sentence what this algorithm does.

This algorithm computes the sum of the positive values of array A.

c. Characterize, using the Big-Oh notation, the running time of the above
algorithm in terms of n under the assumption that pop and push operations
require O(n) time each.

O(n2)

 6

2. Consider the following algorithm described in pseudo-code, which takes an array A of
n positive integers as input and uses an initially-empty queue Q as a local variable:

let Q be an empty queue;
for i = 0 to n-1 do
 if A[i] is an odd number then
 Q.enqueue(A[i]);
 else
 while Q is not empty do
 print(Q.dequeue() + " ");
 end while
 end if
end for
while Q is not empty do
 print(Q.dequeue() + " ");
end while

a. Describe in one sentence what this algorithm does.
This algorithm prints all the odd values of array A out on the same line.

b. Characterize, using the Big-Oh notation, the running time of the above
algorithm in terms of n under the assumption that each dequeue operation
requires O(1) time.

O(n)

 7

 Problem 4: Queues (15 minutes) [35 points]
1) Write a class called SLLBasedQueue<T> that represents a singly linked list

based queue data structure. In particular, you are required to:
a. Create the SinglyLinkedList<T> data structure as well as all of its

associated components (the SNode<T> class, SList<T> interface, and
EmptyListException class).

b. Create the queue class using the singly linked list developed in (a) such that
the methods of the Queue ADT are implemented to run in O(1) time.

public class EmptyListException extends Exception {

 public EmptyListException(String msg) {
 super(msg);
 }
}
public interface Position<T> {
 public T getElement();

}
public class SNode<T> implements Position<T> {
 private T element;
 private SNode<T> next;
 public SNode(T element, SNode<T> next) {
 super();
 this.element = element;
 this.next = next;
 }
 public T getElement() {
 return element;
 }
 public SNode<T> getNext() {
 return next;
 }
 public void setNext(SNode<T> next) {
 this.next = next;
 }
 public void setElement(T element) {
 this.element = element;
 }
}
public interface SList<T> {
 public int size();
 public boolean isEmpty();
 public T removeFromHead() throws EmptyListException;
 public T removeFromTail() throws EmptyListException;
 public void insertAtHead(T e);
 public void insertAtTail(T e);

}
public class SinglyLinkedList<T> implements SList<T> {
 private int size;
 private SNode<T> head, tail;
 private StringBuilder sb;
 public SinglyLinkedList() {

 8

 size = 0;
 head = tail = null;
 sb = new StringBuilder();

 }
 public int size() {
 return size;
 }

 public boolean isEmpty() {
 return (size==0);
 }
 public T removeFromHead() throws EmptyListException {
 if(isEmpty())
 throw new EmptyListException("List is empty!");

 T toReturn = head.getElement();

 if(head == tail) {
 head = tail = null;
 } else {
 head = head.getNext();
 }

 size--;
 sb.delete(0, sb.indexOf(toReturn.toString())+
 toReturn.toString().length()+1);
 return toReturn;
 }

 public T removeFromTail() throws EmptyListException {
 if(isEmpty())
 throw new EmptyListException("List is empty!!");

 T toReturn = tail.getElement();

 if(head == tail) {
 head = tail = null;
 } else {
 SNode<T> temp = head;
 while(temp.getNext() != tail)
 temp = temp.getNext();
 temp.setNext(null);
 tail = temp;
 }

 size--;
 sb.delete(sb.indexOf(toReturn.toString()),
 sb.indexOf(toReturn.toString())+
 toReturn.toString().length()+1);
 return toReturn;
 }

public void insertAtHead(T e) {
 SNode<T> newSNode = new SNode<>(e, head);

 if(isEmpty())

 9

 tail = newSNode;
 head = newSNode;

 size++;
 sb.insert(0, e.toString() + " ");

 }
 public void insertAtTail(T e) {
 SNode<T> newSNode = new SNode<>(e, null);

 if(isEmpty()) {
 head = newSNode;
 } else {
 tail.setNext(newSNode);
 }

 tail = newSNode;
 size++;
 sb.append(e.toString() + " ");

 }

 public T getHead() throws EmptyListException {
 if(isEmpty())
 throw new EmptyListException("List is empty!!");
 return head.getElement();
 }

 public T getTail() throws EmptyListException {
 if(isEmpty())
 throw new EmptyListException("List is empty!!");
 return tail.getElement();
 }

 public String toString() {
 return sb.toString();
 }

}
public interface Queue<T> {
 public int size();
 public boolean isEmpty();
 public T dequeue() throws EmptyListException;
 public void enqueuer(T e);
 public T front() throws EmptyListException;
}
public class SLLBasedQueue<T> implements Queue<T> {
 private SinglyLinkedList<T> sll;

 public SLLBasedQueue() {
 sll = new SinglyLinkedList<>();
 }

 @Override
 public int size() {
 return sll.size();
 }

 10

 @Override
 public boolean isEmpty() {
 return sll.isEmpty();
 }

 @Override
 public T dequeue() throws EmptyListException {
 return sll.removeFromHead();
 }

 @Override
 public void enqueue(T e) {
 sll.insertAtTail(e);
 }

 @Override
 public T front() throws EmptyListException {
 return sll.getHead();
 }

 public String toString() {
 return sll.toString();
 }
}

 11

Appendix: Classes and Methods

1. Methods related to SinglyLinkedList<T> and SNode<T>:

SinglyLinkedList<T>
int size()
boolean isEmpty()
void insertAtHead(T e)
void insertAtTail(T e)
T removeFromHead() throws EmptyListException
T removeFromTail() throws EmptyListException
T getHead() throws EmptyListException
T getTail() throws EmptyListException

SNode<T>
T getElement()
SNode<T> getNext()
void setElement(T e)
void setNext(SNode<T> n)

