

Data Structures COE 312

ExamII Preparation Exercises

1. Patrick designed an algorithm called search2D that can be used
to find a target element x in a two dimensional array A of size N
= n2. The algorithm search2D iterates through the n rows of the
array A, terminating when x is found or the entire array is
searched. Find hereafter a pseudo-code description of the
algorithm search2D:

Algorithm search2D(x, A):
Input: An element x and an n2-element array, A
Output: The sum (i+j) such that x=A[i][j] or -1 if no
element in A is equal to x.

0i
1j

while i < n do
),,(AxiarrayFindj 
 if j != -1

 return (i+j)
end if

1 ii
end while
return -1

Note that search2D invokes the method called arrayFind on each
row of the array A in order to determine the index of the
column that contains the target element x. The pseudo code for
the arrayFind method is given as follows:

Algorithm arrayFind(i, x, A):
Input: i, the index of the current row, x and A
Output: index j such that x=A[i][j] or -1 if no element in
row A[i] is equal to x.

0j
while j < n do
 if A[i][j] == x

 return j

else
 1 jj

end while
return -1

a. What is the worst-case running time of search2D in terms
of n?

The worst case running time is O(n2). In fact, for each iteration of the
loop in search2D the loop enclosed in arrayFind will execute
completely. Since both loops will execute n times, it follows that in
the worst case the algorithm runs in O(n2)

b. What is the worst-case running time of search2D in terms
of N, where N is the total size of A?

Because N = n2, we can conclude that worst case running time is
O(N).

2. Characterize using the big-Theta notation the worst-case
running time of the following algorithm. Justify your answer.

Solution

Let A be given array of n integers.
for i=1 to n-1 do

if (A[i]= 0) then
for j=0 to i do

Let A[i] = A[i] + A[j];
end for

end if
end for

Worst case scenario: The statement (A[i]= 0) in if block always returns true
so that the inner for loop is always executed.
Value of ‘i' the statement A[i] = A[i] + A[j] is executed
1 2 times
2 3 times
3 4 times
. .
. .
. .
. .

n-1 n times
Total number of times the statement is executed: f(n)= 2+3+….+n =
n(n+1)/2 – 1 = O(n2)

3. Write a recursive function to compute the binary equivalent of
a given positive integer n. This function takes as input a base-10
value n and produces an output of type String that gives a
binary representation of n. The recursive algorithm can be
described as follows: recursively compute the binary equivalent
of n/2. Append 0 to the output if n is even, and append 1 to the
output if n is odd. You continue the division process (i.e., n/2)
until you get a quotient that is either 0 or 1 (base cases). Use the
following header for the function:

Solution

String binaryEquivalent(int n) {

1. if (n == 0)
2. return "0";
3. if (n ==1)
4. return "1";
5. if (n % 2 == 0)
6. return binaryEquivalent(n/2) + "0";
7. else
8. return binaryEquivalent(n/2) + "1";

}

4. What does the algorithm given below do? Give a “Big-Oh”
characterization of its running time.

Algorithm foo(a, n)
Input: two integers a and n
Output: ?
k ← n
b ← 1
c ← a
while k > 0 do
 if k mod 2 = 0 then
 k ← k/2
 c ← c*c
 else
 k ← k – 1

 b ← b * c
return b

Solution

This algorithm computes an.

Its running time is O(logn) for the following reasons: The
initialization and the if statement and its contents take constant time,
so we need to figure out how many times the while loop gets called.
Since k goes down (either gets halved or decremented by one) at each
step, and it is equal to n initially, at worst the loop gets executed n
times. But we can (and should) do better in our analysis.
Note that if k is even, it gets halved, and if it is odd, it gets
decremented, and halved in the next iteration. So at least every
second iteration of the while loop halves k. One can halve a number n
at most logn times before it becomes <= 1. If we decrement the
number in between halving it, we still get to halve no more than logn.
Since we can only decrement k in between two halving iterations, we
get to do a decrementing iteration at most logn + 2 times. So we can
have at most 2*logn + 2 iterations. This is obviously O(logn).

5. Design and implement a recursive application that allows an
end user to test to see whether an input string is a palindrome.
The user should be able to test as many strings as desired.

Recall that a palindrome is a string of characters that reads the
same forward or backward. For example, the following strings
are palindromes:
radar
kayak

Your application must consist of two classes named
PalindromeDriver and PalindromSupport that should be stored
in two separate Java files. As its name suggests, the class called
PalindromeDrive.java is to be used for the purpose of testing
the strings entered by the user to see if they are palindromes.

The other class (i.e. PalindromSupport.java) should contain a
recursive support method called testPalindrome that takes two
integer parameters representing the indexes of the characters
on either end of the string being tested and that returns a
boolean value indicating whether or not the tested string is a
palindrome. Note that the testPalindrome method accepts only
two parameters, namely the two integers storing the indexes of
the two characters on either end of the string that is being
tested.

Solution

//***

// PalindromeDriver.java
//***

import java.util.Scanner;

public class PalindromeDriver
{
 //---
 // Tests strings to see if they are palindromes.
 //---
 public static void main (String args[])
 {
 String str, another = "y";

 Scanner scan = new Scanner(System.in);

 while (another.equalsIgnoreCase("y"))
 {
 System.out.println ("Enter a potential palindrome:");
 str = scan.nextLine();

 PalindromeSupport test = new PalindromeSupport(str);

 if (test.isPalindrome())
 System.out.println ("That string IS a palindrome.");
 else
 System.out.println ("That string is NOT a palindrome.");

 System.out.println();
 System.out.print ("Test another palindrome (y/n)? ");
 another = scan.nextLine();
 }
 }
}

//***

// PalindromeSupport.java
//***

public class PalindromeSupport
{
 private String testString;

 //---
 // Stores the string to be evaluated.
 //---
 public PalindromeSupport(String test)
 {
 testString = convertString(test);
 }

 //---
 // Converts a string to correct format; removes all characters
 // except for number and digits
 //---
 private String convertString (String str)
 {
 String str2 = "";

 str = str.toLowerCase();

 for (int i=0; i < str.length(); i++)
 if (Character.isLetterOrDigit(str.charAt(i)))
 str2 += str.charAt(i);

 return str2;
 }

 //---
 // Determines if the string is a palindrome.

 //---
 public boolean isPalindrome()
 {
 return testPalindrome(0, testString.length()-1);
 }

 //---
 // Recursively determines if the string is a palindrome by
 // testing smaller substrings.
 //---
 private boolean testPalindrome (int startIndex, int endIndex)
 {
 boolean result;

 if (endIndex == startIndex || endIndex < startIndex) // base
case
 result = true;
 else
 if (testString.charAt(startIndex) ==
testString.charAt(endIndex))
 result = testPalindrome(startIndex+1, endIndex-1);
 else
 result = false;

 return result;
 }
}

6. Now, we will turn to a more complex problem that lends itself
nicely to a recursive solution. You are required to design a class
that lists all permutations of an arbitrary string supplied by the
end user. It is important to note that a permutation is simply a
rearrangement of the letters that make up a string. For instance,
the string “eat” has six permutations associated with it, namely
“eat”, “eta”, “aet”, “ate”, “tea”, and “tae”.

The application that you are asked to develop must be made up
of two classes whose partial definitions are presented below.
The first class is called PermutationGenerator and is in charge
of computing the answer by generating a collection of
permuted strings based on the input string. The other class is

called PermutationGeneratorTester, which, as its name implies,
is used to test the permutation generator class.

I have already created two program skeletons for you hereafter
corresponding to the classes described above. Your job is
simply to complete the two implementations as per the
guidelines conveyed through the comments that are used
throughout the code.

File PermutationGeneratorTester.java

import java.util.ArrayList;
import java.util.Scanner;
/**
 This program tests the permutation generator class
*/
public class PermutationGeneratorTester {
 public static void main(String[] args) {
 // Read a string from the end user
 Scanner scan = new Scanner(System.in);
 System.out.println(“Please enter a String:”);
 String str = scan.nextLine();
 // Create an instance of the Permutation
Generator

PermutationGenerator generator = new
PermutationGenerator(str);
ArrayList<String> permutations =
generator.getPermutations();

 // Print all possible permutations out
for(int i=0; i<permutations.size(); i++)

 System.out.println(permutations.get(i));
 }

}

File PermutationGenerator.java

import java.util.ArrayList;
/**
 This program generates permutations of a word
*/
public class PermutationGenerator {
 // instance variable goes here
 private String word;
 /**

Constructs a permutation generator
 @param aWord is the word to permute
 */
 public PermutationGenerator(String aWord) {
 // other code to initialize the instance variable
 // would go here
 word = aword;
 }

 /**

Gets all permutations of a given word
 */
 Public ArrayList<String> getPermutations() {

 ArrayList<String> result = new
ArrayList<String>();

// The empty string has a single permutation:
// itself
if(word.length() == 0) {
 result.add(word);
 return resul;
}

/*
Loop through all character positions using a for
loop whose index i ranges from 0 to one less than
the length of the string. Form a simpler word by
removing the ith character then generate all
permutations of the simpler word. Finally, add
the removed character to the front of each
permutation of the simpler word. */
for(int i=0; i<word.length();i++) {
 //Form a simpler word by removing ith char
 String shorterWord = word.substring(0, i) +
 word.substring(i+1);

 //Generate all permutations of simpler word

PermutationGenerator
shorterPermutationGenerator = new
PermutationGenerator(shorterWord);
ArrayList<String> shorterWordPermutations =

shorterPermutationGenerator.getPermutations();

 //Add the removed character to the front of
 //each permutation of the simpler word

for(int j=0;
j<shorterWordPermutations.size(); j++)

result.add(word.charAt(i)+
shorterWordPermutations.get(j));

}
// Return all permutations;
return result;

 }
}

Here is an example that illustrates the main idea behind generating
permutations recursively. Consider the string “eat”. Let us simplify
the problem. First, we will generate all permutations that start with
the letter ‘e’, then those that start with ‘a’, and finally those that start
with ‘t’. How do we generate the permutations that start with ‘e’? To
accomplish this, we need first to know the permutations of the
substring “at”. This is the same problem all over again but with a
simpler input, namely the shorter string “at”. Thus, we can use
recursion. Generate the permutations of the substring “at”. They are:
“at” and “ta”. Then, for each permutation of that substring, prepend
the letter ‘e’ to get the permutations of “eat” that start with ‘e’,
namely: “eat” and “eta”. Now, let us turn our attention to the
permutations of “eat” that start with ‘a’. We need to produce the
permutations of the remaining letters, “et”. They are: “et” and “te”.
Then, we add the letter ‘a’ a the front of the strings and obtain: “aet”
and “ate”. We generate the permutations that start with ‘t’ in the
same way. That is the main gist of the recursive solution.

