
 1

COE 312 – Data Structures

Welcome to Exam I

Thursday October 25, 2018

Instructor: Dr. Wissam F. Fawaz

Name: ___Solution Key____________________

Student ID: ________________

Instructions:

1. This exam is Closed Book. Please do not forget to write your

name and ID on the first page.

2. You have exactly 100 minutes to complete the 4 required

problems.

3. Read each problem carefully. If something appears ambiguous,

please write your assumptions.

4. Points allocated to each problem are shown in square brackets.

5. Put your answers in the space provided only. No other spaces

will be graded or even looked at.

Good Luck!!

 2

Problem 1: Exception (20 minutes) [20 points]
1) Which of the following is not a checked exception?

a. IOException

b. NumberFormatException

c. Exception

d. Both (b) and (c)

2) Which of the following methods can be used to get the line number information associated

with a given StackTraceElement?

a. getMessage()

b. getNumber()

c. getLine()

d. None of the above

3) What does the top row of the call stack trace corresponding to an exception occurrence

represent?
a. Detection point

b. The initial point (method) at which the exception occurred

c. An exception message describing what type of exception occurred

d. None of the above

4) Which of the following static methods can be used to compare a floating-point value to

NaN?

a. Integer.NaN

b. Integer.isNaN

c. Integer.isNumber

d. None of the above

For the next couple of questions (5, 6, and 7) consider the following code fragment. Assume that

double method1(int) is a method that was properly created. Note that line numbers are

placed at the beginning of each statement for ease of reference in the subsequent questions.

1. int value1 = 11;

2. double value2;

3. assert (value1 <= 0 || value1 >= 10);

4. value2 = method1(value1);

5. assert (value2 > 2) : “Invalid output”;

5) Which of the following command line option can be used to enable assertions?
a. -enable

b. -enableAssertion

c. -ea

d. None of the above is a valid command line option for activating assertions

6) Which of the following statements about the code fragment above is true?
a. The statement at line number 3 represents a post-condition

b. The statement at line number 5 represents a pre-condition

c. Both (a) and (b) are true

d. Both (a) and (b) are false

7) Which of the following statements about the code fragment is true?
a. The statement at line number 5 generates an exception if value2 receives a value of 2 at

line number 4.

b. The statement at line number 3 generates an assertion error

c. Both (a) and (b) are false statements

d. Both (a) and (b) are true statements

 3

8) What output does the following code fragment produce?
int[] arr = {1, 3, 4, 2};

int output = 1;

try {

 for(int i=0; i<=arr.length; i++)

 output *= arr[i];

} catch(IndexOutOfBoundsException e) {

 System.out.print(“Done: ”);

}

System.out.println(output);

a. Done:

b. 12

c. Done: 24

d. None of the above

9) Consider the following method definition:
void foo() throw Exception {

 throws new Exception(“Error in foo!”);

}

Which of the following is true about this definition?
a. This method definition does not compile correctly

b. The following method call: foo(); produces an exception

c. Both of the above are true

d. None of the above is true

10) Which of the following methods is not defined in the Exception class?

a. getMessage()

b. printStackTrace()

c. getStackTrace()

d. All of the above are defined in the Exception class

11) Which of the following results in a compile-time error?
a. Throwable e = new NumberFormatException(“Problem occurred”);

b. NumberFormatExceptin e=new InputMismatchException(“Error”);

c. Both of the above

d. None of the above

12) Which of the following parent classes can be used to derive and create a new checked

exception class?
a. Exception

b. RunTimeException

c. Both of the above

d. None of the above

13) What output does the following code fragment produce?
try {

 System.out.println(10/0.0);

} catch(Exception e) {

 System.out.println(“Arithmetic exception occurred.”);

}

a. Arithmetic exception occurred.

b. NaN

c. The compiler generates a compile-time error since Java does allow division by zero with

floating point values.

d. None of the above

 4

Problem 2: Polymorphism and IO (20 minutes) [20 points]
1) Which of the following methods is not defined in the java.io.File class?

a. exist()

b. lastModified()

c. list()

d. All of the above methods are part of the File class

Consider the following code fragment for the next couple of questions. Note that line numbers are

placed at the beginning of each statement for ease of reference in the subsequent questions.

1. File srcFile = new File(“In.jpg”);

2. File trgtFile = new File(“Out.jpg”);

3. FileInputStream fis=new FileInputStream(srcFile);

4. FileOutputStream fos=new FileOutputStream(trgtFile);

5. byte[] buffer = new byte[(int) srcFile.length()];

6. int len;

7. while((len = fis.read(buffer)) > 0)

8. fos.write(buffer, 0, len);

9. fos.close(); fis.close();

2) What does the above code fragment do?
a. It copies some of the content of srcFile into trgtFile

b. It copies all of the bytes except one byte from srcFile into trgtFile

c. It copies the content of srcFile in its entirety to trgtFile

d. None of the above describes accurately what the code fragment does

3) Assuming that the above code is placed inside the body of a main method, which of the

following headers can be used for that main method?

a. public static void main(String[] args) throws IOException

b. public static void main(String[] args) throws Exception

c. Both of the above

d. None of the above

4) How many iterations are performed by the while loop present at line number 7 if the source

file srcFile has a non-zero size?
a. 2

b. 1

c. It is not possible to determine the number of iterations as it depends on the size of
srcFile

d. None of the above

5) What is the maximum number of bytes that can be written by the statement at line number 8 to

trgtFile?
a. (len+1) bytes

b. len bytes

c. (len-1) bytes

d. None of the above

6) Given that the FileInputStream class is derived from the class InputStream and

that the FileOutputStream class is derived from OutputStream, which of the

following method headers can be used for a method called foo that can receive both

FileInputStream and FileOutputStream objects as parameters?

a. public void foo(InputStream obj)

b. public void foo(OutputStream obj)

c. public void foo(Object obj)

d. None of the above

 5

For the following questions, consider a class hierarchy rooted at an abstract superclass called

StaffMember. Assume that StaffMember has two direct child classes, namely the

Volunteer and Employee subclasses. Suppose further that Employee has two direct child

classes called Executive and Hourly, respectively. StaffMember defines an abstract

method called pay, which is overridden by all of its descendant classes. Moreover, Executive

defines a method called awardBonus(double) and Hourly implements a method called

addHours(int). Note finally that all classes of the considered hierarchy have default

constructors; that is, constructors taking 0 parameters.

7) Given the above class hierarchy, which of the following statements results in a compile-

time error?

a. StaffMember member = new StaffMember();

b. Hourly hourly = new Hourly();

hourly.addHours(23.5);

c. Both of the above

d. None of the above

8) Consider the following array:
Employee[] employees = {new Executive(), new Hourly()};

Which of the following statements generates an exception?
a. employees[2].pay();

b. ((Executive) employees[1]).awardBonus(24.7);

c. Both of the above

d. None of the above

9) Given the employees array defined in the previous question, which of the following for

loops correctly pays all the elements of that array?
a. for(StaffMember staff : employees)

staff.pay();

b. for(Employee employee : employees)

employee.pay();

c. Both of the above

d. None of the above

10) Which of the following correctly captures the definition of the constructor of the

Volunteer class?

a. public void Volunteer() { }

b. public void Volunteer() { super(); }

c. Both of the above

d. None of the above

11) Assume that StaffMember has a toString() method that is not overridden by the

Volunteer class. In light of this assumption, which of the following toString()

method definitions is equivalent to the toString() as defined in the Volunteer class?

a. public String toString() { super.toString(); }

b. public String toString() { super(); }

c. Both of the above

d. None of the above

12) Consider the following statement: StaffMember member = new Hourly();

Which of the following correctly calls the addHours method as defined in Hourly?

a. member.addHours(12);

b. ((Employee) member).addHours(12);

c. ((Hourly) member).addHours(12);

d. Both (b) and (c)

 6

Problem 3: I/O streams (30 minutes) [30 points]
You are given a text files called “In.txt”. Moreover, you are given a binary file called “In.jpg”.

Note that “In.txt” consists of 4 paragraphs that are separated by a blank line. That is, a single blank

line is used to separate any two consecutive paragraphs in “In.txt”. It is important to highlight in

this regard that a blank line does not contain any characters and as such it is equivalent to an empty

string.

In light of the above, you are tasked with designing and implementing a Java program that:

1. Modifies the content of “In.txt” as follows. Your Java program should re-order the

paragraphs of “In.txt” such that the 4th paragraph of the original file appears first, followed

by the 1st paragraph of the original file, then the 3rd paragraph, and finally the 2nd paragraph

of the original file should appear last in the modified version of the file.

2. Then, your program should process “In.jpg” as follows. The first half of “In.jpg” should

be exchanged with its second half in the sense that your program should swap the contents

of the first and second halves of the “In.jpg” file.

Assume in both cases that the source files belong to the same directory as your Java project.

import java.io.*;

public class FileManagement {

 public static void main(String[] args) throws IOException {

 File txtFile = new File(“In.txt”);

 File jpgFile = new File(“In.jpg”);

 FileWriter fw = new FileWriter(txtFile);

 BufferedWriter bw = new BufferedWriter(fw);

 PrintWriter outToFile = new PrintWriter(bw);

 Scanner fileScan = new Scanner(txtFile);

 StringBuilder[] pgs = new StringBuilder[4];

 for(int i=0; i<pgs.length; i++)

 pgs[i] = new StringBuilder();

 int currentPg = 0; String line;

 while(fileScan.hasNextLine()) {

 line = fileScan.nextLine();

 if(line.equals(“”))

 currentPg++;

 else

 pgs[currentPg].append(line + “\n”);

 }

 outToFile.println(pgs[3]);

 outToFile.println(pgs[0]);

 outToFile.println(pgs[2]);

 outToFile.println(pgs[1]);

 outToFile.close();

 fileScan.close();

 FileInputStream fis = new FileInputStream(jpgFile);

 FileOutputStream fos = new FileOutputStream(jpgFile);

 byte[] firstHalf = new byte[(int) jpgFile.length()/2];

 7

byte[] secondHalf = new byte((int) (jpgFile.length() –

 jpgFile.length()/2)];

 fis.read(firstHalf);

 fis.read(secondHalf);

 fos.write(secondHalf, 0, secondHalf.length);

 fos.write(firstHalf, 0, firstHalf.length);

 fos.close();

 fis.close();

 }

}

 8

Problem 4: XML, JSON and Timer (30 minutes) [30 points]
Consider the following XML-formatted and JSON-formatted documents.

<?xml version="1.0"?>

<timers>

<timer>

<id>1</id>

<delay>2</delay>

</timer>

<timer>

<id>2</id>

<delay>2</delay>

</timer>

<timer>

<id>3</id>

<delay>1</delay>

</timer>

<timer>

<id>4</id>

<delay>1</delay>

</timer>

<timer>

<id>5</id>

<delay>2</delay>

</timer>

<timers>

[{

"Decrement":2,

"StartingValue":19

},

{

"Decrement":5,

"StartingValue":15

},

{

"Decrement":4,

"StartingValue":10

},

{

"Decrement":2,

"StartingValue":14

},

{

"Decrement":4,

"StartingValue":14

}]

The information given above is stored in two separate online files called, respectively, “timers.xml”

and “timers.json”, with both residing inside a folder named “Timer” on the

“http://www.wissamfawaz.com” webserver. So for instance, “timers.xml” can be referenced

through the following URL: “http://www.wissamfawaz.com/Timer/timers.xml”.

1. Write a Java program that manages a bunch of timer objects as illustrated below. Each one

of the managed timer instances will independently perform a count-down from some

starting value until reaching a value that is below zero. This is achieved by decrementing

a running counter by a certain decrement value every delay seconds. Note that each

individual timer has an unique identifier called id that differentiates it from the remaining

counters. In particular, your application should accomplish the following tasks:

a. It should retrieve the id, delay, decrement, and startingValue attributes from the

online files given above,

b. Your program should then start multiple simultaneous count-down instances

having an id, delay, and starting values matching the one retrieved from the online

files,

c. Lastly, your program should make sure to:

1. stop all timer instances once they completed their associated count-down

operation.

2. Compile a list of the ids of those timer objects that completed their count-

down operations first as well as another list of those timer objects that

finalized their count-down operations last.
import java.awt.event.ActionEvent;

import java.awt.event.ActionListener;

import java.io.BufferedWriter;

import java.io.File;

import java.io.FileWriter;

import java.io.InputStream;

import java.io.PrintWriter;

 9

import java.net.URL;

import java.util.ArrayList;

import javax.swing.Timer;

import javax.xml.parsers.DocumentBuilder;

import javax.xml.parsers.DocumentBuilderFactory;

import org.json.JSONArray;

import org.json.JSONObject;

import org.json.JSONTokener;

import org.w3c.dom.Document;

import org.w3c.dom.Node;

import org.w3c.dom.NodeList;

public class TimerManager {

 private Timer[] timers; private int[] counters;

 private ArrayList<Integer> idsAL, delaysAL, decrementsAL,

 startingValsAL;

 public TimerManager() {

 timers = null; counters = null;

 idsAL = new ArrayList<>();

 delaysAL = new ArrayList<>();

 decrementsAL = new ArrayList<>();

 startingValsAL = new ArrayList<>();}

 public static void main(String[] args) throws Exception {

 TimerManager manager = new TimerManager();

 manager.retrieveInfo();

 manager.startTimers();

 manager.results();

 } // End of main

 public void retrieveInfo() throws Exception {

 URL url1 =

 new URL(“http://www.wissamfawaz.com/Timer/timers.xml”);

 URL url2 =

 new URL(“http://www.wissamfawaz.com/Timer/timers.json”);

 InputStream is1 = url1.openStream(), is2=url2.openStream();

DocumentBuilderFactory dbf =

DocumentBuilderFactory.newInstance();

 DocumentBuilder db = dbf.newDocumentBuilder();

 Document doc = db.parse(is1);

 NodeList idsNodeList = doc.getElementsByTagName(“id”);

NodeList delaysNodeList =

doc.getElementsByTagName(“delay”);

 Node idNode, delayNode;

 for(int i=0; i<idsNodeList.getLength(); i++) {

 idNode = idsNodeList.item(i);

 idsAL.add(Integer.parseInt(idNode.getTextContent()));

 delayNode = delaysNodeList.item(i);

 delaysAL.add(

Integer.parseInt(delayNode.getTextContent()));

 }

 int nbOfTimers = idsNodeList.getLength();

 Timers = new Timer[nbOfTimers];

counters = new int[nbOfTimers];

JSONTokener tokener = new JSONTokener(is2);

JSONArray mainArr = new JSONArray(tokener);

JSONObject obj; int decrement, startingVal;

for(int i=0; i<mainArr.length(); i++) {

 obj = mainArr.getJSONObject(i);

 decrement = obj.getInt(“Decrement”);

 10

 startingVal = obj.getInt(“StartingValue”);

 decrementsAL.add(decrement);

 startingVals.add(startingValue);

}

startTimers();

 } // End of retrieveInfo

 private void startTimers() {

 int delayInt;

 for(int i=0; i<timers.length(); i++) {

 delayInt = delaysAL.get(i);

 counters[i] = startingValsAL.get(i);

timers[i] = new Timer(delayInt*1000, new

CountDownHandler(i));

timers[i].start();

 }

 } // End of startTimers

 private class CounrDownHandler implements ActionListener {

 private int timerIndex;

 public CountDownHandler(int index) {

 timerIndex = index;

 }

 public void actionPerformed(ActionEvent e) {

 if(counter[timerIndex]>0)

 counter[timerIndex] -=

 decrementsAL.get(timerIndex);

 }

 } // End of CountDownHandler

 private void results() throws Exception {

 ArrayList<Integer> indexesRunningTimers =

 new ArrayList<>();

 ArrayList<Integer> indexesFinishedTimers =

 new ArrayList<>();

 ArrayList<Integer> idsWinningTimers =

 new ArrayList<>();

 ArrayList<Integer> idsLosingTimers =

 new ArrayList<>();

 boolean winnersIdentified = false;

 while(true) {

 if(indexesRunningTimers.isEmpty())

 break;

 for(int timerIndex : indexesRunningTimers) {

 if(counters[timerIndex] < 0) {

 indexesFinishedTimers.add(timerIndex);

 timers[timerIndex].stop();

 if(!winnersIdentified)

 idsWinningTimers.add(

 idsAL.get(timerIndex));

 }

 if(!idsWinningTimer.isEmpty()&&

 !winnersIdentified)

 winnersIdentified = true;

 }

 if(indexesFinishedTimers.size() ==

 indexesRunningTimers.size()) {

 for(int index : indexesFinishedTimers)

 idsLosingTimers.add(

 idsAL.get(index));

 11

 }

 for(int timerIndex : indexesFinishedTimers)

 indexesRunningTimers.remove(

 new Integer(timerIndex));

 indexesFinishedTimers.clear();

 }

 System.out.println(“Winners: ” + idsWinningTimers);

 System.out.println(“Losers: ” + idsLosingTimers);

 } // End of results

}// End of TimerManager class

 12

Appendix: Classes and Methods
1. XML parsing related classes along with their associated methods:

DocumentBuilderFactory

• static DocumentBuilderFactory

newInstance()

• DocumentBuilder newDocumentBuilder()

Document

• NodeList

getElementsByTagName(String)

Element

• NodeList

getElementsByTagName(String)

DocumentBuilder

• Document parse(InputStream)

NodeList

• int getLength()

• Node item(int index)

Node

• String getTextContent()

• NodeList getChildNodes()

2. Classes of the java.io package:

java.io.File

• File(String)

• long length()

java.io.FileOutputStream

• FileOutputStream(File)

• void write(byte[] buff, int off,

int len)

• void close()

java.io.FileInputStream

• FileInputStream(

File)

• int read(byte[])

• void close()

java.io.FileWriter

• FileWriter(File)

java.io.PrintWriter

• PrintWriter(BufferedWriter)

• void print(String)

• void println(String)

• void close()

java.io.InputStreamReader

• InputStreamReader(

InputStream)

java.io.BufferedReader

• BufferedReader(

InputStreamReader)

• String readLine()

3. Scanner and ArrayList and some of their related methods.

java.util.Scanner

Scanner(File)

String nextLine()

boolean hasNext()

boolean hasNextLine()

String next()

int nextInt()

double nextDouble()

java.util.ArrayList<T>

ArrayList<>()

int size()

T get()

void add(T)

boolean contains(T)

int indexOf(T)

4. JSON parser classes and some of their related methods.
JSONArray

JSONArray(JSONTokener)

int length()

JSONObject getJSONObject(int i)

JSONArray getJSONArray(int i)

double getDouble(int i)

int getInt(int i)

String getString(int i)

JSONObject

JSONObject(JSONTokener)

JSONArray getJSONArray(String key)

JSONObject getJSONObject(String

key)

String getString(String key)

double getDouble(String key)

int getInt(String key)

5. Timer class and ActionListener interface and some of their associated methods.

Timer

void start()

void stop()

boolean isRunning()

ActionListener

void actionPerformed(ActionEvent e)

