
 1

COE 312 – Data Structures

Welcome to Exam I

Thursday October 26, 2017

Instructor: Dr. Wissam F. Fawaz

Name: _______________________

Student ID: ________________

Instructions:

1. This exam is Closed Book. Please do not forget to write your

name and ID on the first page.

2. You have exactly 75 minutes to complete the 4 required

problems.

3. Read each problem carefully. If something appears ambiguous,

please write your assumptions.

4. Points allocated to each problem are shown in square brackets.

5. Put your answers in the space provided only. No other spaces

will be graded or even looked at.

Good Luck!!

 2

Problem 1: Exception (15 minutes) [20 points]
1) Which of the following expressions produces an ArithmeticException?

a. 10/0.0

b. 0.0/0

c. Both of the above

d. None of the above

2) Which of the following statements produces a NumberFormatException? Assume

that scan is a Scanner object that was instantiated properly.

a. int value = scan.nextLine();

b. int value = Integer.parseInt(“12.5f”);

c. Both of the above

d. None of the above

3) Which of the following statements produces an InputMismatchException if

the user enters a double value via the keyboard? Assume that scan is a

Scanner object that is attached to the keyboard and that was instantiated properly.
a. int value = scan.nextInt();

b. String value = scan.nextLine();

c. Both of the above

d. None of the above

4) Which of the following represents a checked exception?
a. InputMismatchException

b. IOException

c. Both of the above

d. None of the above

5) Consider the following statement:
assert (!(value>0 && value<10)):“Invalid value”;

Which of the following values of the value variable causes the above statement

to produce an error message?
a. 10

b. 0

c. Both of the above

d. None of the above

6) What output does the following code fragment?
String str = “Programming is fun”;

try {

System.out.print(str.substring(str.length()-3,str.length()));

} catch(StringIndexOutOfBoundsException e) {

 System.out.print(“Cannot extract string!”);}

System.out.print(“, try catch end”);

a. fun

b. Cannot extract string!, try catch end

c. fun, try catch end

d. None of the above

 3

7) Consider the following method definition:
void foo() {

 throw new Exception(“Error in foo!”);

}

Which of the following is true about this definition?
a. This method definition does not compile correctly

b. The following method call: foo(); produces an exception

c. Both of the above are true

d. None of the above is true

8) Which of the following methods is not defined in the Exception class?
a. getMessage()

b. printStackTrace()

c. getStackTraceElements()

d. None of the above

9) Which of the following causes the compiler to issue an error message?
a. Exception e = new IOException(“Problem occurred”);

b. RunTimeException e = new ArithmeticException(“Problem”);

c. Both of the above

d. None of the above

10) Which of the following parent classes can be used to derive and create a new

unchecked exception class?
a. Exception

b. Throwable

c. Both of the above

d. None of the above

 4

Problem 2: Polymorphism and IO (15 minutes) [20 points]

1) Which of the following statements is true about the relationship between superclass

and subclass types?
a. A subclass reference cannot reference an instance of the superclass

b. An instance of the subclass can be assigned to a superclass variable

c. Both of the above are true

d. None of the above is true

2) Which of the following interfaces must be implemented by a class that is designed

to respond to the events generated by a Timer object?
a. ActionEventHandler

b. ActionEventListener

c. ActionHandler

d. None of the above

3) Assume that Hourly and Executive are both derived from the Employee

superclass, which in turn is derived from the StaffMember abstract superclass.

Which of the following statements causes a compile-time error to occur? Assume

that all of the previously mentioned classes are equipped with default constructors.
a. StaffMember s = new Employee();

b. Hourly h = new Executive();

c. StaffMember sm = new Hourly();

d. Both (b) and (c)

4) Consider the class hierarchy from the previous question. Assume now that

StaffMember defines an abstract method called pay() with the following

signature: abstract public void pay();

Suppose that all the descendants of StaffMember redefine the inherited pay

method. Which of the following statements calls the pay method as defined in the

Hourly class?
a. Employee e = new Hourly(); e.pay();

b. StaffMember sm = new Hourly(); e.pay();

c. Both of the above

d. None of the above

5) Consider the class hierarchy defined in question (3) again. Assume now that

Hourly defines a method called addHours(int) and Executive defines a

method called awardBonus(double). Which of the following statements

causes a compile-time error to occur?
a. Employee e = new Hourly(); ((Hourly) e).addHours(3.5);

b. Employee e = new Executive(); e.awardBonus(400);

c. Both of the above

d. None of the above

 5

6) Which of the following interfaces defined in the NIO package can be used to decide

if a given directory/file should be accepted or filtered?
a. FileFilter<Path>

b. Filter<File>

c. Filter<DirectoryStream>

d. None of the above

7) Consider the task of downloading the text that make up some online webpage.

Assume that a URL object called url is created to represent that remote webpage.

Which of the following statements correctly instantiates a BufferedReader

object called br that can be used to perform the said task?
a. BufferedReader br = new BufferedReader(url.openStream());

b. InputStream is = ur.openStream();
BufferedReader br =

new BufferedReader(new ReaderInputStream(is));

c. InputStream is = ur.openStream();
BufferedReader br =

new BufferedReader(new InputStreamReader(is));

d. None of the above

8) Which of the following statements correctly creates a BufferedInputStream

object that is attached to a remote webpage supplying binary content? Assume that

the webpage is represented by a URL object called url.
a. InputStream is = url.openStream();

BufferedInputStream bis =

new BufferedInputStream(new InputStreamReader(is));

b. BufferedInputStream bis =

new BufferedInputStream(url.openStream());

c. Both of the above

d. None of the above

9) Which of the following methods of the File class accepts as a parameter a

FileFilter object?
a. list

b. listFile

c. listFilteredFiles

d. None of the above

10) Which of the following represents the data type of the output produced by the

method mentioned in the previous question?
a. File[]

b. String[]

c. Path[]

d. None of the above

 6

Problem 3: I/O streams (20 minutes) [30 points]
You are given two text files called “textFile1.txt” and “textFile2.txt”, respectively.

Moreover, you are given two binary files called “binaryFile1.jpg” and “binaryFile2.jpg”,

respectively. Design and implement a Java program that:
1. Exchanges the content of “textFile1.txt” with that of “textFile2.txt”. Be careful, as you are

required to swap the contents of the two text files, meaning that “textFile1.txt” shall receive

the original content of “textFile2.txt” and “textFile2.txt” shall receive the initial content of

“textFile1.txt”.

2. Then, your program should the same for the binary files exchanging their contents as well.

Assume in both cases that the source and the target files belong to the same directory as

your Java project.
import java.io.*;

import java.util.Scanner;

public class SwappingFiles {

 public static void main(String[] args) throws IOException {

 File textFile1 = new File("textFile1.txt");

 File textFile2 = new File("textFile2.txt");

 File tmpTextFile = new File("tmpFile.txt");

 copyTextFile(textFile1, tmpTextFile);

 copyTextFile(textFile2, textFile1);

 copyTextFile(tmpTextFile, textFile2);

 File binaryFile1 = new File("binaryFile1.jpg");

 File binaryFile2 = new File("binaryFile2.jpg");

 File tempBinaryFile = new File("tmpFile.jpg");

 copyBinaryFile(binaryFile1, tempBinaryFile);

 copyBinaryFile(binaryFile2, binaryFile1);

 copyBinaryFile(tempBinaryFile, binaryFile2);

 }

private static void copyTextFile(File srcFile, File trgtFile) throws

IOException {

 Scanner fileScan = new Scanner(srcFile);

 FileWriter fw = new FileWriter(trgtFile);

 BufferedWriter bw = new BufferedWriter(fw);

 PrintWriter pw = new PrintWriter(bw);

 String line;

 while(fileScan.hasNextLine()) {

 line = fileScan.nextLine();

 pw.println(line);}

 pw.close();

 fileScan.close();}

private static void copyBinaryFile(File srcFile, File trgtFile) throws

IOException {

BufferedInputStream bis = new BufferedInputStream(new

FileInputStream(srcFile));

BufferedOutputStream bos = new BufferedOutputStream(new

FileOutputStream(trgtFile));

 byte[] buffer = new byte[1024];

 int len;

 while((len = bis.read(buffer)) > 0) {

 bos.write(buffer, 0, len);

 }

 bis.close();

 bos.close();

 }

 7

}

 8

Problem 4: XML (25 minutes) [30 points]
Consider the following XML-formatted document that shows a list of employees along

with their gross and net salaries:

<?xml version="1.0"?>

<company>

<employee>

<firstname>Wissam</firstname>

<lastname>Fawaz</lastname>

<salary>

<gross>600</gross>

<net>440.54</net>

</salary>

</employee>

<employee>

<firstname>John</firstname>

<lastname>Stewart</lastname>

<salary>

<gross>400</gross>

<net>378.46</net>

</salary>

</employee>

<employee>

<firstname>Christiano</firstname>

<lastname>Ronaldo</lastname>

<salary>

<gross>300000</gross>

<net>288000</net>

</salary>

</employee>

<employee>

<firstname>Stephen</firstname>

<lastname>Colbert</lastname>

<salary>

<gross>340</gross>

<net>327.5</net>

</salary>

</employee>

</company>

The information given above is stored in an online XML file called “employees.xml” that

resides inside a folder named “XML” on the “http://www.wissamfawaz.com” webserver.

So, “employees.xml” can be referenced through the following URL:

“http://www.wissamfawaz.com/XML/employees.xml”.

1. Write a Java program that:

a. retrieves all the gross and net salaries contained in this online xml file. This

information should be stored in a text file called “input.txt”,

b. Your program should then output the first name and last name of the

employees having the highest and lowest gross salaries.
import java.io.*;

import java.net.URL;

import java.util.ArrayList;

import javax.xml.parsers.*;

import org.w3c.dom.*;

 9

public class Salaries {

 public static void main(String[] args) throws Exception {

URL employees = new URL("http://www.wissamfawaz.com/employees.xml");

InputStream employeesAsIS = employees.openStream();

 StringBuilder sb = new StringBuilder();

 ArrayList<String> xmlGrossAL = new ArrayList<>();

 ArrayList<String> xmlFirstNameAL = new ArrayList<>();

 ArrayList<String> xmlLastNameAL = new ArrayList<>();

 File input = new File("input.txt");

 FileWriter fw1 = new FileWriter(input);

 BufferedWriter bw1 = new BufferedWriter(fw1);

 PrintWriter pw1 = new PrintWriter(bw1);

DocumentBuilderFactory dbf = DocumentBuilderFactory.newInstance();

DocumentBuilder db = dbf.newDocumentBuilder();

Document doc = db.parse(employeesAsIS);

NodeList salariesNodeList, firstNameNodeList, lastNameNodeList;

Node salaryNode, firstNameNode, lastNameNode;

String xmlGrossStr, xmlNetStr, xmlFirstNameStr, xmlLastNameStr;

 Element salaryElt;

 salariesNodeList = doc.getElementsByTagName("salary");

 firstNameNodeList = doc.getElementsByTagName("firstname");

 lastNameNodeList = doc.getElementsByTagName("lastname");

 for(int i=0; i<salariesNodeList.getLength(); i++) {

 salaryNode = salariesNodeList.item(i);

 salaryElt = (Element) salaryNode;

xmlGrossStr = salaryElt.getElementsByTagName("gross").item(0).getTextContent();

xmlNetStr = salaryElt.getElementsByTagName("net").item(0).getTextContent();

 firstNameNode = firstNameNodeList.item(i);

 xmlFirstNameStr = firstNameNode.getTextContent();

 lastNameNode = lastNameNodeList.item(i);

 xmlLastNameStr = lastNameNode.getTextContent();

 xmlGrossAL.add(xmlGrossStr);

 xmlFirstNameAL.add(xmlFirstNameStr);

 xmlLastNameAL.add(xmlLastNameStr);

 sb.append(xmlGrossStr + "\n");

 sb.append(xmlNetStr + "\n");}

 pw1.print(sb);

 pw1.close();

 double maxGross = Double.MIN_VALUE;

 double minGross = Double.MAX_VALUE;

 int indexMin = -1, indexMax = -1;

 double gross;

 for(int i=0; i<xmlGrossAL.size(); i++) {

 gross = Double.parseDouble(xmlGrossAL.get(i));

 if(gross > maxGross) {

 maxGross = gross;

 indexMax = i;

 }

 if(gross < minGross) {

 minGross = gross;

 indexMin = i;

 }

 }

 System.out.println("First name of employee with max gross: " +

 xmlFirstNameAL.get(indexMax));

 System.out.println("Last name of employee with max gross: " +

 xmlLastNameAL.get(indexMax));

 System.out.println("First name of employee with min gross: " +

 xmlFirstNameAL.get(indexMin));

 System.out.println("Last name of employee with min gross: " +

 xmlLastNameAL.get(indexMin));

 }

}

 10

Appendix: Classes and Methods
1. XML parsing related classes along with their associated methods:

DocumentBuilderFactory

• static DocumentBuilderFactory

newInstance()

• DocumentBuilder newDocumentBuilder()

Document

• NodeList

getElementsByTagName(String)

Element

• NodeList

getElementsByTagName(String)

DocumentBuilder

• Document parse(InputStream)

NodeList

• int getLength()

• Node item(int index)

Node

• String getTextContent()

• NodeList getChildNodes()

2. Classes of the java.io package:

java.io.File

• File(String)

• long length()

java.io.FileOutputStream

• FileOutputStream(File)

• void write(byte[] buff, int off,

int len)

• void close()

java.io.FileInputStream

• FileInputStream(

File)

• int read(byte[])

• void close()

java.io.FileWriter

• FileWriter(File)

java.io.PrintWriter

• PrintWriter(BufferedWriter)

• void print(String)

• void println(String)

• void close()

java.io.InputStreamReader

• InputStreamReader(

InputStream)

java.io.BufferedReader

• BufferedReader(

InputStreamReader)

• String readLine()

3. Classes of the java.nio package:

java.nio.file.Files

• static BufferedReader

newBufferedReader(Path)

• static BufferedWriter

newBufferedWriter(Path)

• static InputStream

newInputStream(Path)

• static Path

copy(Path src, Path trgt)

• static void

write(Path trgt, byte[] buff)

java.nio.file.Paths

• static Path get(String)

java.nio.file.Path

• Path getFileName()

• File toFile()

4. Scanner and ArrayList and some of their related methods.

java.util.Scanner

Scanner(File)

String nextLine()

boolean hasNext()

String next()

int nextInt()

double nextDouble()

java.util.ArrayList<T>

ArrayList<>()

int size()

T get()

void add(T)

boolean contains(T)

int indexOf(T)

